Name: ______
PID: _____

Question	Points	Score
1	5	
2	15	
3	10	
4	10	
5	5	
6	10	
7	5	
8	20	
Total:	80	

- 1. Write your Name and PID, on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even you do not complete the earlier part.
- 6. You may use major theorems *proved* in class, but not if the whole point of the problem is reproduce the proof of a theorem proved in class or the textbook. Similarly, quote the result of a homework exercise only if the result of the exercise is a fundamental fact and reproducing the result of the exercise is not the main point of the problem.

1. (5 points) Let A be a unital commutative ring. Suppose P_1 and P_2 are projective A-modules. Prove that $P_1 \otimes_A P_2$ is a projective module.

2. (a) (5 points) Let $D := \mathbb{Z}[\sqrt{-5}]$ and $\mathfrak{a} := \langle 3, 1 + \sqrt{-5} \rangle$. Prove that \mathfrak{a} is not a principal ideal.

(b) (10 points) Let $D := \mathbb{Z}[\sqrt{-5}]$ and $\mathfrak{a} := \langle 3, 1 + \sqrt{-5} \rangle$. Prove that \mathfrak{a} is a projective *D*-module.

3. (10 points) Suppose A is a unital commutative ring, and $A^n \simeq A^m$ as A-modules. Prove that m = n.

4. (10 points) Give an example of a unital commutative ring A and its subring B such that A is Noetherian and B is not Noetherian. Justify your answer.

5. (5 points) Suppose D is an integral domain and M is a flat D-module. Prove that M is torsion-free.

6. (10 points) Prove that $x^p - x + 1 \in \mathbb{F}_p[x]$ is irreducible.

7. (5 points) Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of f(x) over F. Suppose there is $\alpha \in E$ such that $f(\alpha) = f(2\alpha) = 0$. Prove that the characteristic of F is positive.

8. (a) (10 points) Suppose $F \subseteq \mathbb{C}$ is a subfield and p is a prime number. Suppose $\zeta_p \in F$, where $\zeta_p := e^{2\pi i/p}$ is a p-th root of unity. Prove that for any $a \in F$, $[F[\sqrt[p]{a}]:F]$ is either 1 or p, where $\sqrt[p]{a}$ is a zero of $x^p - a$.

(b) (10 points) Suppose $K/\mathbb{Q}[\zeta_p]$ is a finite Galois extension, and $a \in K$. Prove that there is a finite Galois extension $L/\mathbb{Q}[\zeta_p]$ such that $\sqrt[p]{a} \in L$ and [L:K] is a power of p. (Hint: think about $\prod_{\sigma \in \text{Gal}(K/\mathbb{Q}[\zeta_p])} (x^p - \sigma(a))$.)

Good Luck!