1 Homework 6.

1. For a group G, let $[G, G]$ be the group generated by $\left[g_{1}, g_{2}\right]:=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ s where $g_{1}, g_{2} \in G$. This is called the derived subgroup of G.
(a) Prove that $[G, G]$ is a characteristic subgroup.
(b) Prove that for a normal subgroup N of $G, G / N$ is abelian precisely when $[G, G] \subseteq N$.
(c) Prove that $\left[S_{n}, S_{n}\right]=A_{n}$ for every integer $n \geq 3$.
2. Suppose $n \geq 5$ and $m \geq 2$ are integers.
(a) Find the composition factors of S_{n}.
(b) Prove that if N is a non-trivial proper normal subgroup of S_{n}, then $N=A_{n}$.
(c) Find out for what values of m, S_{m} is solvable.
3. Suppose the following is a SES

$$
1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1
$$

Prove that G_{2} is solvable if and only if G_{1} and G_{3} are solvable.
4. Prove that there is no finite group G such that $[G, G] \simeq S_{4}$.
(Hint. Suppose to the contrary that there exists a finite group G such that $[G, G] \simeq S_{4}$. Convince yourself that

$$
P:=\{I,(12)(34),(13)(24),(14)(23)\}
$$

is the unique Sylow 2-subgroup of A_{4}. Deduce that P is a characteristic subgroup of A_{4}. Consider the action of G on $[G, G] \simeq S_{4}$ by via conjugation. Since A_{4} and P are characteristic subgroups of S_{4}, obtain an action by automorphisms on A_{4} / P. This gives you a group homomorphism from G to $\operatorname{Aut}\left(A_{4} / P\right)$. Argue why this implies that $[G, G]$ acts trivially on A_{4} / P. This means S_{4} acts trivially on A_{4} / P by conjugations. Observe that

$$
(12)(123)(12) P \neq(123) P,
$$

and get a contradiction.)
5. Prove that $D_{\infty}:=\{a x+b \mid a \in\{ \pm 1\}, b \in \mathbb{Z}\}$ under composition is an infinite solvable group which is generated by two elements of order 2 . Find the center $Z\left(D_{\infty}\right)$ of D_{∞}.
(Hint. Think about the symmetries of the integer grid in the real line.)
6. Suppose G is a group. For all $x, y \in G$, let

$$
[x, y]:=x y x^{-1} y^{-1} \quad \text { and } \quad{ }^{x} y:=x y x^{-1} .
$$

Then Hall's equation asserts that

$$
\left[[x, y],{ }^{y} z\right]\left[[y, z],{ }^{z} x\right]\left[[z, x],{ }^{x} y\right]=1
$$

for all $x, y, z \in G$. You can check this on your own and use it in this exercise. For two subgroups H_{1} and H_{2} of $G,\left[H_{1}, H_{2}\right]$ denotes the group generated by

$$
\left\{\left[x_{1}, x_{2}\right] \mid x_{1} \in H_{1}, x_{2} \in H_{2}\right\} .
$$

Let $\gamma_{1}(G):=G$ and $\gamma_{k+1}(G):=\left[G, \gamma_{k}(G)\right]$ for all positive integers $k-$ $\left\{\gamma_{i}(G)\right\}_{i}$ is called the lower central series of G.
(a) Suppose H, K, L are normal subgroups of G. Prove that

$$
[[H, K], L] \leq[[K, L], H][[L, H], K] .
$$

(b) Prove that for every positive integers m and n,

$$
\left[\gamma_{m}(G), \gamma_{n}(G)\right] \subseteq \gamma_{m+n}(G)
$$

(Hint. (1) Since H, K, L are normal subgroups,

$$
[[K, L], H][[L, H], K]
$$

is a normal subgroup of G. Consider $\bar{G}:=G /[[K, L], H][[L, H], K]$, let \bar{H}, \bar{K}, and \bar{L} be the quotient of H, L, and K by $[[K, L], H][[L, H], K]$. Use Hall's equation, and obtain that for all $h \in \bar{H}, k \in \bar{K}$, and $l \in \bar{L}$, we have that $[h, k]$ and l commute. Deduce that $[\bar{H}, \bar{K}]$ commute with l. Obtain that $[[\bar{H}, \bar{K}], \bar{L}]=1$.
(2) Use induction on m and part (a).)

