1 Homework 6.

- 1. For a group G, let [G, G] be the group generated by $[g_1, g_2] := g_1 g_2 g_1^{-1} g_2^{-1}$'s where $g_1, g_2 \in G$. This is called the *derived subgroup* of G.
 - (a) Prove that [G, G] is a characteristic subgroup.
 - (b) Prove that for a normal subgroup N of G, G/N is abelian precisely when $[G, G] \subseteq N$.
 - (c) Prove that $[S_n, S_n] = A_n$ for every integer $n \ge 3$.
- 2. Suppose $n \ge 5$ and $m \ge 2$ are integers.
 - (a) Find the composition factors of S_n .
 - (b) Prove that if N is a non-trivial proper normal subgroup of S_n , then $N = A_n$.
 - (c) Find out for what values of m, S_m is solvable.
- 3. Suppose the following is a SES

$$1 \to G_1 \to G_2 \to G_3 \to 1.$$

Prove that G_2 is solvable if and only if G_1 and G_3 are solvable.

4. Prove that there is no finite group G such that $[G,G] \simeq S_4$.

(**Hint.** Suppose to the contrary that there exists a finite group G such that $[G,G] \simeq S_4$. Convince yourself that

$$P := \{I, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

is the unique Sylow 2-subgroup of A_4 . Deduce that P is a characteristic subgroup of A_4 . Consider the action of G on $[G, G] \simeq S_4$ by via conjugation. Since A_4 and P are characteristic subgroups of S_4 , obtain an action by automorphisms on A_4/P . This gives you a group homomorphism from Gto Aut (A_4/P) . Argue why this implies that [G, G] acts trivially on A_4/P . This means S_4 acts trivially on A_4/P by conjugations. Observe that

$$(1\ 2)(1\ 2\ 3)(1\ 2)P \neq (1\ 2\ 3)P,$$

and get a contradiction.)

5. Prove that $D_{\infty} := \{ax + b \mid a \in \{\pm 1\}, b \in \mathbb{Z}\}$ under composition is an infinite solvable group which is generated by two elements of order 2. Find the center $Z(D_{\infty})$ of D_{∞} .

(Hint. Think about the symmetries of the integer grid in the real line.)

6. Suppose G is a group. For all $x, y \in G$, let

$$[x, y] := xyx^{-1}y^{-1}$$
 and $^{x}y := xyx^{-1}$.

Then Hall's equation asserts that

$$[[x, y], {}^{y} z][[y, z], {}^{z} x][[z, x], {}^{x} y] = 1$$

for all $x, y, z \in G$. You can check this on your own and use it in this exercise. For two subgroups H_1 and H_2 of G, $[H_1, H_2]$ denotes the group generated by

$$\{[x_1, x_2] \mid x_1 \in H_1, x_2 \in H_2\}.$$

Let $\gamma_1(G) := G$ and $\gamma_{k+1}(G) := [G, \gamma_k(G)]$ for all positive integers $k - \{\gamma_i(G)\}_i$ is called the *lower central series* of G.

(a) Suppose H, K, L are normal subgroups of G. Prove that

$$[[H, K], L] \leq [[K, L], H][[L, H], K].$$

(b) Prove that for every positive integers m and n,

$$[\gamma_m(G), \gamma_n(G)] \subseteq \gamma_{m+n}(G).$$

(**Hint.** (1) Since H, K, L are normal subgroups,

$$[[K, L], H][[L, H], K]$$

is a normal subgroup of G. Consider $\overline{G} := G/[[K, L], H][[L, H], K]$, let \overline{H} , \overline{K} , and \overline{L} be the quotient of H, L, and K by [[K, L], H][[L, H], K]. Use Hall's equation, and obtain that for all $h \in \overline{H}$, $k \in \overline{K}$, and $l \in \overline{L}$, we have that [h, k] and l commute. Deduce that $[\overline{H}, \overline{K}]$ commute with l. Obtain that $[[\overline{H}, \overline{K}], \overline{L}] = 1$.

(2) Use induction on m and part (a).)