1 Homework 3.

1. Suppose $p < q < \ell$ are three primes, G is a group, and $|G| = pq\ell$. Then G has a normal Sylow ℓ -subgroup.

(**Hint.** First prove that G has a normal subgroup of order either $p, q, \text{ or } \ell$ elements.)

2. Suppose G is a finite group, N is a normal subgroup of G, and $P \in \text{Syl}_p(N)$. Then $G = N_G(P)N$.

(**Hint**. For every $g \in G$, argue that gPg^{-1} is a Sylow *p*-subgroup of *N*. Use the fact that every two Sylow *p*-subgroups of *N* are conjugate in *N*.)

3. Suppose G is a finite group and H is a subgroup. Suppose for all $x \in H \setminus \{1\}$, $C_G(x) \subseteq H$. Prove that gcd(|H|, [G : H]) = 1.

(**Hint.** Suppose p is a prime which divides gcd(|H|, [G : H]). Suppose $Q \in Syl_p(H)$. Argue that there exists $P \in Syl_p(G)$ such that $Q \subseteq P$. Argue that there exists $y \in Z(Q) \setminus \{1\}$. Considering $C_G(y)$, show that $Z(P) \subseteq Q$. Suppose $x \in Z(P) \setminus \{1\}$, consider $C_G(x)$ to obtain that $P \subseteq H$. Argue why this is a contradiction.)

- 4. Suppose G is a finite group, N is a normal subgroup, and p is a prime factor of |N|.
 - (a) Suppose $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_p(N)$. Prove that there exists $g \in G$ such that $Q = gPg^{-1} \cap N$.
 - (b) Prove that the following is a well-defined surjective function

$$\Phi : \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(N), \quad \Phi(P) := P \cap N.$$

(c) For $P \in \text{Syl}_p(G)$, prove that $N_G(P) \subseteq N_G(\Phi(P))$ and

$$|\Phi^{-1}(\Phi(P))| = [N_G(\Phi(P)) : N_G(P)].$$

(d) Prove that $|Syl_p(N)|$ divides $|Syl_p(G)|$.

(**Hint**. Notice that we have $\Phi(gPg^{-1}) = g\Phi(P)g^{-1}$ for every $g \in G$ and $P \in \text{Syl}_p(G)$. Use this to obtain that $[N_G(\Phi(P)) : N_G(P)]$ does not depend on the choice of P.)

5. Suppose p is an odd prime and G is a group of order p(p+1) which does not have a normal subgroup of order p. Prove that p is a Mersenne prime; that means $p = 2^n - 1$ for some positive integer n.

(Hint. Go through the proof in the lecture note.)

- 6. Suppose p and q are prime numbers and G is a group of order p^2q . Prove that G is not simple.
- 7. A subgroup K of G is called a *characteristic* subgroup if for all $\theta \in \text{Aut}(G)$, $\theta(K) = K$. Notice that every characteristic subgroup is normal.
 - (a) Suppose N is a normal subgroup of G and K is a characteristic subgroup of N. Prove that K is a normal subgroup of G.
 - (b) We say a group H is characteristically simple if the only characteristic subgroups of H are 1 and H. Suppose N is a minimal normal subgroup of G; that means if $M \leq N$ and $M \leq G$, then either $M = \{1\}$ or M = N. Then N is characteristically simple.
- 8. Suppose G is a finite group.
 - (a) Prove that a normal Sylow *p*-subgroup is a characteristic subgroup.
 - (b) Suppose H is a normal subgroup of G and gcd(|H|, [G : H]) = 1. Prove that H is a characteristic subgroup.

(**Hint**. These parts are not related to each other. For the second part, suppose $\theta(H) \neq H$ for some $\theta \in \operatorname{Aut}(G)$. show that $|\theta(H)H/H|$ divides $|\theta(H)|$ and |G/H|.)