MATH200A, HOMEWORK ASSIGNMENT

GOLSEFIDY

1. Special case of Burnside's theorem

Burnside used character theory of finite groups to prove that a group of order $p^n q^m$ is solvable. In this collection of problems you will prove that a group G of order $p^n q$ where p and q are primes is solvable.

- (1) Prove that to show the above claim it is enough to argue why a group of order $p^n q$ is not a non-abelian simple group. (So in the rest of this problem you will assume to the contrary that G is a non-abelian simple group of order $p^n q$.)
- (2) Prove that G has exactly q Sylow p-subgroups.
- (3) Let Q be maximal among the intersections of pairs of Sylow p-subgroups of G. Suppose $Q \neq 1$ and let $H := N_G(Q)$. Prove that H has at least 2 Sylow p-subgroups.
- (4) Prove that H has exactly q Sylow p-subgroups.
- (5) Reprove problem 3 in your midterm to get a contradiction and deduce that the intersection of any two distinct Sylow p-subgroups of G is trivial.
- (6) Prove that $G \setminus (\bigcup_{i=1}^{q} (P_i \setminus \{1\}))$ has exactly q elements, and deduce that G has a unique Sylow q-subgroup and get a contradiction.

2. Frattini subgroup

The Frattini subgroup $\Phi(G)$ of a group G is the intersection of all the maximal subgroups of G. In this collection of problems you will investigate various properties of Frattini subgroups. All the groups in these problems are finite.

- (1) Prove that $\Phi(G)$ is a characteristic subgroup.
- (2) Suppose $f : G_1 \to G_2$ is an onto group homomorphism. Prove that $f(\Phi(G_1)) \subseteq \Phi(G_2)$.
- (3) Suppose H is a subgroup of G. Prove that

H = G if and only if $H\Phi(G) = G$.

GOLSEFIDY

(4) Let $\pi : G \to G/\Phi(G)$ be the natural projection map. Suppose $S \subseteq G$. Prove that

$$\langle S \rangle = G$$
 if and only if $\langle \pi(S) \rangle = \pi(G)$.

- (5) Prove that $\langle S \rangle = G$ if and only if $\langle S \setminus \Phi(G) \rangle = G$.
- (6) Let d(G) be the minimum number of generators of G. Prove that

$$d(G) = d(G/\Phi(G)).$$

(7) Prove that $\Phi(G)$ is a nilpotent group (if G is a finite group). (Hint: Use Frattini's argument to show any Sylow subgroup of $\Phi(G)$ is normal.)

Next you will prove that $\Phi(G) = G^p[G, G]$ if G is a finite p-group. Notice that G^p is the set of the p-th powers of elements of G, and it is not necessarily a subgroup of G. It is, however, a subgroup if G is abelian. So $(G/[G,G])^p$ is a subgroup of G/[G,G] and its preimage in G is $G^p[G,G]$. Therefore $G^p[G,G]$ is a subgroup of G.

- (1) Prove that any maximal subgroup M of G is normal and G/M is a cyclic group of order p.
- (2) Prove that $G^p[G,G] \subseteq \Phi(G)$.
- (3) Suppose V is a finite dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$. Prove that $\Phi(V) = 0$.
- (4) Suppose \overline{G} is an abelian group and $g^p = 1$ for any $g \in \overline{G}$. For any $i \in \mathbb{Z}/p\mathbb{Z}$ and $g \in \overline{G}$, let $i \cdot g := g^i$. Convince yourself that \cdot gives us a well-defined scalar product and we can view \overline{G} as a vector space over $\mathbb{Z}/p\mathbb{Z}$. Deduce that $\Phi(\overline{G}) = 1$ if \overline{G} is a finite abelian and $g^p = 1$ for any $g \in \overline{G}$. (You do not need to write anything for this part.)
- (5) Prove that $\Phi(G/(G^p[G,G])) = 1$.
- (6) Prove that $\Phi(G) \subseteq G^p[G,G]$; and deduce that $\Phi(G) = G^p[G,G]$.
- (7) Prove that $d(G) = \dim_{\mathbb{Z}/p\mathbb{Z}} G/(G^p[G,G]).$
- (8) Suppose S is a minimal generating set; that means $\langle S \rangle = G$ and $\langle S' \rangle \neq G$ for any proper subset S' of S. Prove that |S| = d(G).
- (9) Does the claim of the previous part hold for a finite group which is not a p-group?

 $\mathbf{2}$