Lecture 20: Free monoids
Thursday, November 16, 2017 1025 PM
Def. A set M with a binary apention is called a monoid if
(3) (Associativity)
$$\forall x,y,z \in M$$
, $(x \cdot y) \cdot \overline{z} = x \cdot (y \cdot \overline{z})$
(2) (Neutral element) $\exists e \in M$, $\forall x \in M$, $e \cdot x = x = x \cdot e$.
Suppose X is a non-empty set. Let $L(X)$ be the language
in the alphabet of X; that means elements of $L(X)$ (we call then
 $avords$) are finite sequences with terms in X:
 $\omega = x_1 x_2 \cdots x_n$ where $x_i \in X$.
We include the empty word \emptyset in $L(X)$.
Conditivation defines a binary operator on $L(X)$; that is
 $(x_1 x_2 \cdots x_n) \cdot (y_1 y_2 \cdots y_n) := x_1 \cdots x_n y_1 \cdots y_m$.
Clearly is an associative operator; and the empty word
is the neutral element of $(L(X), \cdot)$. So $(L(X), \cdot)$ is a
monoid. In fact $L(X)$ is the free monoid generated by X;
that means $L(X)$ satisfies the following universal property:
(Universal Troperty of free objects.)
Any function f from X to a monoid M has a unique extension

Lecture 20: Free monoids Thursday, November 16, 2017 11:34 PM to a monoid homomorphism $\hat{f}: L(X) \rightarrow M$. The Universal Property of a free object is often described using the following diagram: Set Monorid Remark If monoid is changed to group, we get the definition of free group generated by X; if monoid is changed to k-algebra, we get the definition of free k-algebra; etc. Pt of freeness of L(X). Let $\hat{f}(x_1 \cdots x_n) := f(x_1) \cdot f(x_2) \cdots \cdot f(x_n)$ and $\hat{f}(\emptyset) = I_M$; and check that I is a monorid homomorphism. Uniquess is clear! Suppose $\{G_i\}_{i \in I}$ is a family of groups. Let X be the disjoint union of G; 's. (Notice that we can consider the set G; x Z is instead of Gi, and think about it as a copy of Gi. This way we can make sure that Gi's are disjoint.)

Lecture 20: Free product of groups Thursday, November 16, 2017 11:56 PM Let L(X) be the free monoid generated by X. For example Suppose $G_1 = \mathbb{Z}/_{2\mathbb{Z}}$ and $G_2 = \mathbb{Z}/_{3\mathbb{Z}}$. First we pick isomorphic copies of G, and G2 that are disjoint, say $G_1 = \frac{3}{2}e, a_2$ and $a_2^2 = e; G_2 = \frac{3}{2}1, b, b^2 \frac{3}{2}$ and $b^3 = 1$. Then $eall bbb^2 e L(X)$ and this is different from the word ab. The first word has length 7 and the 2nd word has length 2. To get a group structure we have to define an equivalency relation on L(X); let \sim be the equi. relation generated by the following. • $\omega_1 e \omega_2 \sim \omega_1 \omega_2$ if e is the neutral element of G_i for some iEI. • $\omega_1 \chi_1 \chi_2 \omega_2 \sim \omega_1 \chi_3 \omega_2$ if $\chi_1, \chi_2 \in G_i$ and $\chi_3 = \chi_1 \cdot \chi_2$ Let $F(X) := L(X)/\sim$. <u>Claim</u>. $\omega_1 \sim \omega_1'$ and $\omega_2 \sim \omega_2' \rightarrow \omega_1 \omega_2 \sim \omega_1' \omega_2'$ (try to convince yourself that this is true.) Let $[\omega_1]_{N} \cdot [\omega_2]_{N} := [\omega_1 \omega_2]_{N}$. Then by the above claim

Lecture 20: Free product of groups

Friday, November 17, 2017 12:04 AM

This is a well-defined operator. \underline{Claim} $(\mathcal{F}(X), \cdot)$ is a group. $\underline{PP} \cdot \cdot (Associative) ([\omega_1] \cdot [\omega_2]) \cdot [\omega_3] = [\omega_1 \omega_2] \cdot [\omega_3]$ $= [\omega_1 \omega_2 \omega_2]$ $[\omega_1] \cdot ([\omega_2] \cdot [\omega_3]) = [\omega_1] \cdot [\omega_2 \omega_3]$ $= [\omega_1 \omega_2 \omega_3]$ • (Neutral element) $[\omega] \cdot [\omega] = [\omega] = [\omega] = [\omega]$. (Inverse) $[x_1 x_2 \dots x_n] [x_n^{-1} x_{n-1}^{-1} \dots x_n^{-1}]$ $= [x_1 x_2 \dots x_n x_n^{-1} x_{n-1}^{-1} \dots x_1^{-1}].$ $X_1 \cdots X_{n-1} \times X_n \times X_n^{-1} \times X_{n-1}^{-1} \cdots \times X_1^{-1} \sim X_1 \cdots \times X_{n-1} e \times X_{n-1}^{-1} \cdots \times X_1^{-1}$ $\sim \times_{1} \cdots \times_{n-1} \times_{n-1}^{-1} \cdots \times_{1}^{-1}$ So by induction on n, we have $\chi_1 \dots \chi_n \chi_n^{-1} \dots \chi_1^{-1} \sim \emptyset$. Similarly $[x_n^{-1} \cdots x_l^{-1}] \cdot [x_1 \cdots x_n] = [\emptyset]$. F(x) is called the free product of Gi's; and it is denoted by $* G_{1}$ The universal property of free product of groups. (Warning. In category theory, this is called the coproduct of these objects.) Suppose G is a group and f: G; ->G are group homomorphisms

Lecture 20: Free product of groups
ride, November 17, 2017 1226 AM
Then there is a unique group homomorphism
$$f: \underset{i\in I}{\times} G_{i} \rightarrow G$$

such that $\hat{f}|_{G_{i}} = f_{i}$. Atternatively
Hom $(\underset{i\in I}{\times} G_{i} \rightarrow G) \rightarrow \prod_{i\in I}$ Hom (G_{i}) , G_{i}
 $f \mapsto (\hat{f}|_{G_{i}})_{i\in I}$
Is a bijection.
Pf. Let X be the disjoint union of G_{i} 's; and $L(X)$ be
the free monoid generated by X. Let $f: X \rightarrow G$,
 $f(\infty) := f_{i}(\infty)$ if $x \in G_{i}$.
Since $L(X)$ is the free monoid generated by X, there is a monoid
homomorphism $\hat{f}: L(X) \rightarrow G$ such that $\hat{f}|_{X} = f$. That means
 $\hat{f}|_{G_{i}} = f_{i}$ is a group homomorphism; and so
 $\hat{f}(e_{G_{i}}) = e_{G}$ where $e_{G_{i}}$ is the neutral element of G_{i}
 $\hat{f}(x_{3}) = \hat{f}(x_{1}) \hat{f}(x_{2})$ if $x_{1}, x_{2} \in G_{i}$ and $x_{3} = x_{1} \cdot x_{2}$.
Next we show $\omega_{1} \sim \omega_{2} \Rightarrow \hat{f}(\omega_{2})$.
Since \sim is generated by the following relations, $\omega_{1}e_{G_{i}}, \omega_{2} \sim \omega_{1}x_{2}$.

Lecture 20: Free product of groups Friday, November 17, 2017 11:51 AM and $\omega_1 x_1 x_2 \omega_2 \sim \omega_1 x_3 \omega_2$ if $x_1, x_2 \in G_1$ and $x_3 = x_1 \cdot x_2$, it is enough to show $\widehat{f}(\omega_1 e_{c_1} \omega_2) = \widehat{f}(\omega_1 \omega_2) \quad \text{and} \quad \widehat{f}(\omega_1 x_1 x_2 \omega_2) = \widehat{f}(\omega_1 x_3 \omega_2)$ if $x_1, x_2 \in G_1$ and $x_3 = x_1, x_2$. $\widehat{f}(\omega_1 e_{\mathcal{G}_1}; \omega_2) = \widehat{f}(\omega_1) \widehat{f}(e_{\mathcal{G}_1}) \widehat{f}(\omega_2)$ \hat{f} is a monorid homomorphism $\hat{f}_{|_{G_i}}$ is a gp hom. $= \hat{f}(\omega_1) = \hat{f}(\omega_2)$ $=\hat{f}(\omega_1)\hat{f}(\omega_2)$ $= f(\omega_1 \omega_2)$ f is a monorid homo. monoid hom. $= \widehat{f}(\omega_1) \widehat{f}(x_3) \widehat{f}(\omega_2)$ f (eHom (Gi)G) monorid hom. $=\hat{f}(\omega_1 x_3 \omega_2)$ Let $f(I\omega I) := f(\omega)$. The previous claim shows that f is well-defined. Claim. Fe Hom (*Gi,G). $\underline{\mathcal{H}} \cdot \widehat{\mathcal{H}} ([\omega_1] [\omega_2]) = \widehat{\mathcal{H}} ([\omega_1 \omega_2]) = \widehat{\mathcal{H}} (\omega_1 \omega_2) = \widehat{\mathcal{H}} (\omega_1) \widehat{\mathcal{H}} (\omega_2)$ = $\tilde{f}([\omega_1])$ $\tilde{f}([\omega_2])$

Lecture 20: Free product of groups
Stunday, November 18, 2017

$$\hat{\mathcal{F}}([\&1]) = \hat{f}(\&]) = \hat{e}_{G}$$

$$\hat{\mathcal{F}}([[x_{1}^{-1}x_{n}]^{-1}]) = \hat{f}([[x_{n}^{-1}x_{n}]^{-1}]) = \hat{f}([x_{n}^{-1}x_{n}]^{-1}]) = \hat{f}([[x_{n}^{-1}x_{n}]^{-1}]) = \hat{f}([[x_{n}^{-1}x_{n}]^{-$$