Lecture 19: Some properties of nilpotent groups Monday, November 6, 2017 8:44 AM Proposition. Suppose G is nilpotent. Then 1) G is solvable. 2 If $1 \neq N \leq G$, then $Z(G) \cap N \neq 1$; in particular $Z(G) \neq 1$ if $G \neq 1$. ③ H≤G, N⊴G ⇒ H and G/N are nilpotent. **P** \sharp . (1) By induction on i, we have $Y_i(G) \supseteq G^{(i)}$. (In fact using one of your HW assignments you can prove $G^{(1)} \subseteq \gamma_i(G) \cdot)$ 2) Suppose $Y_i(G) \cap N \neq 1$ and $Y_{i+1}(G) \cap N = 1$. There is such an i as $Y_1(G) \cap N = N \neq 1$ and $\gamma_{+c}(G) \cap N = 1$. Then $[Y_{i}(G) \cap N, N] \subseteq Y_{i+1}(G) \cap N = 1$. So $\gamma_i(G) \cap N \subseteq Z(N)$. 3 By induction on i, show $\mathcal{Y}_i(H) \subseteq \mathcal{Y}_i(G)$ and $\gamma_i(G/N) = \gamma_i(G)N/N \cdot \Box$

Lecture 19: Frattini subgroup of finite p-groups Wednesday, November 15, 2017 8:43 AM On the other hand, G/[G,G] is an abelian group; and so (G/[GrG]) is a normal subgroup. And $\left(G_{\left[G,G\right]}\right)^{p} = \left\{\left(g_{\left[G,G\right]}\right)^{p} \mid g \in G\right\}$ $= \{g^{P}[G,G] \mid g \in G\} = G^{P}[G,G]/[G,G]$ So G[G,G] is a normal subgroup of G; and $V_{a} := G/G^{P}_{G}[G,G]$ is a p-torsion abelian gp. Hence $G/G^{P}_{G}[G,G]$ is a vector space over the finite field $\mathbb{Z}/p_{\mathbb{Z}}$. ($\cosh y^{2}$) Hence for any non-zero vector v, there is a subspace V of codimension 1 st. $v \notin V$. Hence $V_0/_V \simeq \mathbb{Z}/_{\mathbb{PZ}}$ and v & V. So V is a maximal subgp of Vo. Suppose gEG/GIG,G]; then v := gGIG,GIEV, and v=0. Now let V be as above. So V= M/G [G,G] for some maximal subgp M of G; and $g \notin M$. That means $g \notin \overline{\Phi}(G)$. We have proved $g \notin G^{P}[G,G] \Rightarrow g \notin \Phi(G)$. So $\Phi(G) \subseteq G^{P}[G_{1}G_{1}]^{2}$. Claim follows from 0, 2.

Lecture 19: Frattini subgroups under a homomorphism Wednesday, November 15, 2017 11:13 AM Here is an alternative way to explain the 2nd part of the proof. Lemma . Suppose $\Theta: G \rightarrow H$ is an onto group homomorphism. Then $\Theta(\Phi(G)) \subseteq \Phi(H)$. <u>PF.</u> Suppose M is a maximal subgroup of H. Claim. O⁻¹(M) is a maximal subgp of G. <u>Pf of chim</u>. Since θ is a group hom, $\theta^{-1}(M)$ is a subgp. . Since Θ is onto and M is a proper subgp, $\Theta^{-1}(M)$ is a proper subgp. . Suppose $\Theta^{-1}(M) \leq \widetilde{M} \leq G$. {Subclaim $\Theta^{-1}(\Theta(\widetilde{M})) = \widetilde{M}$. Pf of subclaim. $M \subseteq \Theta^{-1}(\Theta(M))$ is true for any function 0. • $\chi \in \Theta^{-1}(\Theta(\widetilde{M})) \implies \Theta(\chi) \in \Theta(\widetilde{M}) \implies \exists \widetilde{m} \in \widetilde{M}, \Theta(\chi) = \Theta(\widetilde{m})$ $\Rightarrow \Theta(\tilde{m}^{-1}x) = 1 \Rightarrow \tilde{m}^{-1}x \in \Theta^{-1}(\xi_1\xi) \subseteq \Theta^{-1}(M) \subseteq \tilde{M}$ ⇒ x ∈ m · H = H · ■ Then $\Theta^{-1}(M) \lneq \Theta^{-1}(\Theta(\widetilde{M})) \cdot S_0 \quad M \lneq \Theta(\widetilde{M}) \leq H \cdot Since$ M is max., we deduce that $\Theta(\widetilde{M}) = H$ and so $\widetilde{M} = \overline{\Theta}(\Theta(\widetilde{M})) = G$.

Lecture 19: Frattini subgroups of finite p-groups Wednesday, November 15, 2017 11:32 AM $\bigcap \ \theta^{-1}(M) \supseteq \overline{\Phi}(G).$ Hence So M<H mosx. $\theta(\Phi(G)) \subseteq \Theta(\bigcap_{\substack{\mathsf{M} \in \mathsf{H} \\ \mathsf{Max}}} \theta^{-1}(\mathsf{M})) = \bigcap_{\substack{\mathsf{M} \in \mathsf{H} \\ \mathsf{Max}}} \mathsf{M} = \Phi(\mathsf{H}) .$ { to is onto } Lemma. Suppose V is a vector space over Z/p7. Then $\Phi(\nabla) = \{\circ\}$ (Ex.) $\begin{array}{c} (\exists x.) \\ \bullet & \Box \\ \bullet & \Box \\ \mathsf{G}[\mathsf{G},\mathsf{G}] \end{array} \qquad \text{is a vector space over } \mathbb{Z}/_{\mathsf{P}\mathbb{Z}} \xrightarrow{\Rightarrow} \Phi(\mathsf{G}/\mathsf{G}^{\mathsf{P}}_{\mathsf{G},\mathsf{G}};\mathsf{G})^{2} \\ & \mathsf{P}\mathbb{Z} \\ & \mathsf{is trivial} \cdot \end{array} \end{array}$ $\pi: G \to G/_{\mathcal{C}}^{1}[G,G] \quad \text{is onto.} \quad \text{So} \quad \mathcal{T}(\underline{\Phi}(G)) \subseteq \underline{\Phi}(G/_{\mathcal{C}}^{2}[G,G])$ $\Phi(G) \subseteq \ker \pi = G^{\mathbb{P}}[G,G]$.