Lecture 14: A_5 is simple

Monday, October 23, 2017 8:40 AM

Lemma. As is simple.

Pf. Suppose 1≠N \ A5.

Case 1. 3 | INI.

In this case, N has an element of order $3 \cdot \text{If } \sigma$ has order 3 and its cycle type is $P_1 \geq P_2 \geq ... \geq P_m$. Then $3 = \text{lcm}(P_1, ..., P_m)$ and $P_1 + ... + P_m = 5$. So the only possib is $3 \geq 1 \geq 1$. So N has a 3 - Cycle. Now using the previous lemma, we deduce that $N = A_5$.

Case 2. 5 | INI and 3/ INI.

So a Sylow 5-subgp P of A_5 is a subgp of N. As $N \triangleleft A_5$, all the Sylow 5-subgps are subgroups of N. But there are

4! = 24 elements of order 5 in A_5 . Hence $|N| \ge 25$ and |N| = 60. So |N| = 30, which contradicts our assumption that 31 |N|.

Case 3. god (15, INI) = 1; and so INI | 4.

Notice that $H:=\{e, (12)(34), (13)(24), (14)(23)\}$ is a Sylow 2-subgp of A_4 ; N should be a subgp of H. But $(15) H(15) = \{e, (52)(34), (53)(24), (54)(23)\}$; and $H \cap (15) H(15) = \{e\}$; which is a contradiction.

Lecture 14: A comment on normal p-subgroups

Monday, October 30, 2017

At the last step of the proof we used the following lemma which is

of independent interest:

Lemma. Suppose N is a normal p-subgp of a finite group G.

Then $N \subseteq \bigcap P$; and $\bigcap P$ is the normal core of a Pesy(G)

Syba q-subgp.

PP. Since N is a p-subgp of G, I a Sylow p-subgp Po s.t.

 $N \subseteq P_0$. Hence, for any $g \in G$, $g N g^{-1} \subseteq g P_0 g^{-1}$. As $N \subseteq G$,

we have $N \subseteq g P_0 g^{-1}$ for any $g \in G$. Therefore

$$N \subseteq \bigcap_{g \in G} g P_g g^{-1} = cor(P_g)$$
.

By Sylows 2^{nd} theorem, $Syl_p(G) = \{gP,g^{-1} \mid g \in G\}$. And so

$$\bigcap_{g \in G} g \mathcal{P}_{g} g^{-1} = \bigcap_{g \in G} \mathcal{P}_{g}. \quad \text{Therefore} \quad \mathcal{N} \subseteq \bigcap_{g \in G} \mathcal{P}_{g}.$$
Therefore
$$\bigcap_{g \in G} \mathcal{P}_{g} G = \bigcap_{g \in G} \mathcal{P}_{g}.$$

If $P_1 \in Syl_q(G)$, then $P_1 = gP_0g^{-1}$ for some $g \in G$. So

$$\operatorname{Cor}(P_1) = \operatorname{Cor}(gP_0g^{-1}) = g \operatorname{Cor}(P_0)g^{-1} = \operatorname{Cor}(P_0). \quad \blacksquare$$

Lecture 14: Alternating group is simple

Wednesday, October 25, 2017 12

Theorem. An is simple if n>5.

Pf. We prove it by induction on n. We have already proxed the

base of induction.

Now suppose $\{e\} \neq N \triangleleft A_n$. Let $G_i := \{o \in A_n \mid \sigma(i) = i\}$.

So , for any i, $G_i \simeq A_{n-1}$. Hence, for $n \geq 6$, G_i is are simple.

So either NnGi=Gi or NnGi= geg.

If for some i NnGi=Gi, then N has a 3-cycle; and

so N=An.

So wilog are can and will assume NnG; = Zeg. So Yourcen,

∀i, we have σ(i) ≠ T(i). (*)

Now suppose e≠0€N has cycle type P_2 > P_2 ~ 2 P_m.

Case 1. 9123.

σ=(a b c ···) (···) ··· (··) ∈ N

Suppose ze,finza,b,cj=&; and consider

 $\sigma' = (c e f) \sigma (c e f)^{-1} = (a b e ...)(...)...(...) \in N$.

> 0≠0' and 0 (a) = o (a); this contradicts (*).

Lecture 14: Alternating group is simple

Wednesday, October 25, 2017 1:03 AM

Case 9. P1 <3.

So or is a prod. of disj. transpositions:

 $\sigma = (\alpha \ b)(c \ d) \cdots (\cdots)$.

Suppose $2e, fg \cap 2a, b, c, dg = \emptyset$. $(n \ge 6)$; and consider

 $\sigma := (c e f) \sigma (c e f)^{-1} = (a b)(e d) \cdots (\cdots)$

 \Rightarrow $\sigma \neq \sigma'$ and $\sigma(a) = \sigma'(a)$; this contradicts (*).

Ex. Suppose G is a group of order 2m where m is an

odd integer. Proxe that G has a normal subgp of order m.

Pt. Since 2/161, by Cauchy's theorem = geG st.

O(g)= 2. Now consider the action GAG by left

translations. Let $\phi: G \longrightarrow S_G$ be the associated group

homomorphism: (f(g))(g') := gg'. So we get a group

homomorphism $\epsilon \cdot \varphi : G \rightarrow \{\pm 1\}$. By the 1st isomorp.

theorem $G/\ker \varepsilon \circ \varphi \cong \operatorname{Im}(\varepsilon \circ \varphi) \subseteq \{\pm 1\}$. So if we show

+(G) has an odd permutation, then IG: ker €. +J=2;

this implies N:=ker & & is a normal subgp of order m.

Lecture 14: Applications of the sign function

Thursday, October 26, 2017

10:16 PM

Claim. & (g) is an odd permutation.

Pf. Let's try to find the cycle type of &G.).

- 1) Since $g \neq e$ and $\phi(g)(g) = g \cdot g$, $\phi(g)$ has no fixed points.
- 2) Since $g^2 = e$, $+(g)^2 = I_c$. And so o(+(g)) = 2.
- 1 and 2 imply the cycle type of tog, only consists of 23.

Since |G| = 2m, the cycle type of $\phi(g)$ is $2 \le \dots \le 2$ m-times

Hence $\phi(g_0)$ is a prod. of m transpositions.

Since m is odd, ϕg_0 is an odd permutation; and the claim

follows.