Lecture 13: Sign function and transpositions

Monday, October 23, 2017

8·13 AM

In the previous lecture we defined $\Delta(x_1,...,x_n) = \prod_{i < j} (x_i - x_j)$

and $\Delta_{\sigma}(x_1,...,x_n) = \Delta(x_{\sigma(n)},...,x_{\sigma(n)})$. And proved that

$$\triangle_{\sigma} = \epsilon(\sigma') \triangle .$$

Theorem. E: Sn-> \text{2} +18 is a group homomorphism.

 $\frac{99}{4}$ $\Delta_{ort} = \epsilon(ort) \Delta$ and

 $\Delta_{\sigma \tau}(x_i) = \Delta(x_{\sigma'\tau(i)})$ $= \Delta_{\sigma}(x_{\tau(i)}) = \epsilon(\sigma) \Delta(x_{\tau(i)})$ $= \epsilon(\sigma) \epsilon(\tau) \Delta(x_i).$

So ∈ (OT)=E(O') ∈(T). ■

How can we determine ∈(or)? In particular what is ∈((a b))?

A close look at the definition of E (or) shows as that

$$\varepsilon(\sigma) = (-1) \quad \text{where} \quad \eta_{\sigma} := \left| \frac{2}{2} (2,j) \right| \quad 2 < j \text{ and } \frac{2}{3} \left| \frac{1}{3} \right|$$

To understand no better, we make an nxn matrix with i,j entry equals to sgn(O'(j)-O'(i)). For instance for

the identity element are get [0+ ... +]

Lecture 13: Sign of transpositions

Friday, October 27, 2017 11:08 AM

Let's see the matrix associated to (1 2):

$$2 1 3 \cdots n$$
 $2 0 - + \cdots + 1 + 0 + \cdots + 3 - - 0$

As you can see n = 1.

(the number of _ in the upper-

triang. part of the matrix.)

How about (a b) where a < b?

As you can see n is odd. So $\in ((a \ b)) = -1$.

The following theorem from theory of root systems gives us another way to think about no:

Lecture 13: Parity

Friday, October 27, 2017 9:56 AM

Theorem. Let $S_1 = (1 \ 2)$, $S_2 = (2 \ 3)$, ..., $S_{n-1} = (n-1 \ n)$. Then for any $\sigma \in S_n$,

 $\left| \left\{ (i,j) \mid 1 < j, \sigma(i) > \sigma(j) \right\} \right| = \min \left\{ m \mid \sigma = S_{i_1} \cdot S_{i_2} \cdot \dots \cdot S_{i_m} \right\} .$ for some choice $\text{of } i_1, \dots, i_m$

this is called the word length of or with respect to S= \{s_1, ..., s_{n-1}\}.

Notice that (b b-1) ... (a+2 a+1) (a a+1) (a+2 a+1)... (b b-1)

= $(O'(a) O(a+1)) = (a b) \cdot So$ any permutation can be written as a product of elements of $\{s_1,...,s_{n-1}\}$ (why?)

Theorem (1) Suppose of, ..., on and T_1, ..., Tm are transpositions

 $f \quad O_1 \cdots O_n = T_1 \cdots T_m$, then $n \equiv m \pmod{2}$.

(2) $\sigma \in \ker \in \iff \sigma$ can be written as a product of even number of transpositions.

 $\cancel{P} \cap \in (\sigma_1 \dots \sigma_n) = \in (\tau_1 \dots \tau_m) \iff (-1)^n = (-1)^m \iff n \equiv m \pmod{2}.$

(and any or can be written as a prod. of transpositions.)

Def. ker & is called the alternating group, and it is denoted

by Anj. Elements of An are called even, and orshiAn

is called odd.

Friday, October 27, 2017 12:04 PM	
In a 15-puzzle, you can rearrange numbers 1.15 in a 4x4	
square by sliding the numbers to the empty spot.	
Q Can the arrangement in B	I reached starting from [A]?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2 1 3 4 5 6 7 8 9 10 11 12 13 14 15
Solution. No! Any move is a transposition on {1,,15, \$;	
in fact any move is of the form (\(\pi \) i) for some	
i∈[1.15]. Since at Al and Bl the empty spot Il is	
at the same place, the number of involved moves should be	
even: # of times $\prod 1 = \#$ of times $\prod 1$ and	
# of times $\square \leftarrow = \#$ of times $\square \rightarrow$.	
So the final permutation should be an even permutation.	
But B is (21) which is odd.	
Remark. In fact starting from [7] to or if and only if permutation.	or is an even or
·	र्टा ३ ०८१४ ठ८६)

Lecture 13: Even permutations and 15-puzzle

Lecture 13: 3-cycles and the alternating group

Monday, October 23, 2017

8.31 AM

Lemma. An is generated by 3-cycles if n>2.

Pf. Observations. (a b)(bc) = (a bc)

. (a b)(c d)=(a b)(b c)(b c)(c d)

=(a b c)(b c d)

So any even permutation is a product of 3-cycles; and

the claim follows.

Lemma. Suppose NAAn, N contains a 3-cycle, and n25.

Then $N = A_n$.

 $\frac{PP}{N}$ Step 1. If $n \ge 5$, then any two 3-cycles are conjugate in A_n .

 \underline{PF} . Suppose T_1 and T_2 are 3-cycles. Then $\exists \sigma \in S_n$ s.t.

 $\sigma T_1 \sigma^{-1} = T_2$. Since $n \ge 5$, $\exists a, b \in \S1, ..., n\S \setminus \text{Supp } T_1$.

So (a b) $T_1 = T_1$ (a b). Hence σ (a b) T_1 (a b) $\sigma^{-1} = T_2$.

Now either $\sigma \in A_n$ or $\sigma \in A_n$. In either case T_1 is

a conjugate of T2 in An.

Step 2. Since NAAn and it contains a 3-cycle, by step 1

it contains all the 3-cycles. Therefore by the previous lemma N=An.