Lecture 12: Order of elements in a symmetric group
Tweaday, October 24, 2017 8:39 PM
In the previous lecture are proved that any ore S_n can be arritten
as a product of disjoint cycles, and this decomposition is unique
up to reordering its factors.
Recall. Suppose G is a group, g, g_eG are torsion; that
means
$$o(g_1), o(g_2) < o$$
. If $g_1g_2 = g_2g_1$, then
 $G(n) \quad o(g_1g_2) = 1.c.m.(o(g_1), o(g_2))$.
Corollary. Suppose the cycle decomposition of or is given
by $T_1 \dots T_m$; and length of T_1 is f_1 . Then
 $o(o^n) = 1.c.m.(I_1, I_2, \dots, I_m)$.
PF. One can easily prove this using $G(n)$, induction on m ,
and the fact that the order of a k-cycle is k-1. **S**
Def. The cycle type of a permutation ore S_n is
the partition of n given by the size of orbits $<\sigma > \cdot i$.
Ex. $2 + 6 + \frac{1}{3} = 0$ or \cdots

Lecture 12: Cycle type and conjugation Tuesday, October 24, 2017 9:50 PM $\underline{Ex} \xrightarrow{1} \qquad ()$ 1+1+2+2 is the cycle type of or. Next we will see that two permutations are conjugate in Sn if and only if they have the same cycle type. $\underline{\operatorname{Lemma}} \cdot \mathcal{O}(\underbrace{i_1 \cdots i_k}_{\mathsf{T}}) \mathcal{O}^{-1} = (\mathcal{O}(i_1) \cdots \mathcal{O}(i_k))$ $\underline{PF} \cdot i \notin \{ \sigma(i_1), \dots, \sigma(i_k) \} \Leftrightarrow \sigma^{-1}(i) \notin \{ i_1, \dots, i_k \}$ $\Leftrightarrow \tau(\mathbf{o}^{-1}(\mathbf{i})) = \mathbf{o}^{-1}(\mathbf{i})$ $\iff (\circ \tau \circ^{-1})(i) = i$ $\cdot \left(\sigma \tau \sigma^{-1} \right) \left(\sigma \left(\mathbf{i}_{j} \right) \right) = \sigma \tau \left(\mathbf{i}_{j} \right) = \$ \sigma \left(\mathbf{i}_{j+1} \right) \quad \text{if } j \neq k$ $o(i_1)$ if j=k. Proposition $\mathcal{O}_1, \mathcal{O}_2 \in S_n$ are conjugate \leftarrow they have the same cycle type. Pf. (=+) Suppose $T_1 \cdots T_n$ is the cycle decomp. of \mathcal{O}_1 . And $O_2 = OO_1 O^{-1}$. Then $O_2 = (O T_1 O^{-1}) \cdots (O T_m O^{-1})$, and by the previous lemma, $\sigma T_i \sigma^{-1}$ is a cycle, it has

Lecture 12: Cycle type and conjugation Tuesday, October 24, 2017 10:03 PM the same length as T;, and supp (or Tio-1) = or (supp Ti). Since O is a bijection and supp $T_i \cap \text{Supp } T_j = \emptyset$ for $i \neq j$, $\sigma(\operatorname{supp} T_i) \land \sigma(\operatorname{supp} T_j) = \emptyset \cdot So(\sigma T_1 \sigma^{-1}) \cdot (\sigma T_m \sigma^{-1})$ is the cycle decomposition of $o_2 = o o_1 o^{-1}$. Hence of and σ_2 are of the same cycle type. (\leftarrow) Suppose O_1 and O_2 have the same cycle type; say $P_1 + \dots + P_m = n$, $P_1 \ge P_2 \ge \dots \ge P_m$ is their common cycle type · So $\sigma_1 = (-, ..., -)(-, ..., -) \cdots (-, ..., -)$ / P_1 / P_2 / \cdots / P_m / is a partition of $\xi_1, 2, ..., n\xi_1$ and $\sigma_2 = (-, ..., -)(-, ..., -)$ P_1 P_2 P_m So the above or is a bijection; that means ore Sn. And by the previous lemma $OO_1O^{-1} = O_2$; and the claim follows.