Lecture 08: Groups of order pq
In the previous lecture we showed, if
$$104 = pq$$
 where $p < q$ are
primes, then there is only one sylves q -subgroup Q_0 . And so $Q_0 < G_0$.
Now let P_0 be a Sylves p -subgroup. Then $P_0 \cap Q_0 = \frac{2}{3}1\frac{q}{3}$ as
 $god(P_0, P_0) = 1$, and $P_0 \cap Q_0 = \frac{2}{3}1\frac{q}{3}$ as
 $god(P_0, P_0) = 1$, and $P_0 \cap Q_0 = \frac{2}{3}1\frac{q}{3}$ as
 $god(P_0, P_0) = 1$, and $P_0 \cap Q_0 = \frac{2}{3}2\frac{q}{3}$. Then
 $P_0 Q_0 = P_0 P_0 Q_0$.
Suppose $P_0 = \frac{q}{2}e_1 q_0 \dots q^{n-1} \frac{q}{3}$ and $Q_0 = \frac{q}{2}e_1 h_0 \dots h_0^{n-1} \frac{q}{3}$. Then
 $G = \frac{q}{3}q_0^{-1} \frac{h^3}{3} | - \frac{1}{2}\sqrt{q} \frac{q}{3}$. Moreover, since $Q_0 < G_0$,
 $g_0 + q_0^{-1} = h_0^{-1}$. Comparing the order of both sides, we get that
 $q = \frac{q}{q} \log(k_0, q)$ (why?); and so $\gcd(k_0, q) = 1$. Moreover, since
 $P_0 \rightarrow \operatorname{Aut}(Q_0), q_0 \mapsto \operatorname{conjugation} by q_0$ is a group homomorphism,
we get that $h_0 + h_0^{h_0}$ is an automorphism of Q_0 , and $P_0 = \frac{1}{q_0}$.
Hence $h_0^0 = h_0$; which happens exactly when $k_0^0 = \frac{1}{2} \pmod{q_0}$.
Having a $\frac{k_0}{q_0}$ which satisfies \mathfrak{S} uniquely determines the group
structure of G_0 . In particular, if $p_0 + q_0 + q_0$; and
 $\operatorname{ord}(q,h_0) = Pq$; which implies $G \simeq \mathbb{Z}/pq \mathbb{Z}$.

Lecture 08: Groups of order p(p-1) and p(p+1) Thursday, October 12, 2017 10:00 PM Problem. Suppose p is prime, and G is a finite group of order pcp-1). Prove that G has a normal subgroup of order p. <u>PP</u>. Let $n_p := |Sy|_p(G)|$. By Sylar's theorems, we have $n_p \mid p-1$ and $n_p \equiv 1 \pmod{p}$. If $n_p \neq 1$, then $p \mid n_p - 1$ implies that $p \leq n_p - 1$; and so $p + 1 \leq n_p \otimes$ On the other hand, $n_p | p-1$ implies $n_p \leq p-1$; which contradicts 🔊 🛢 Problem. Suppose p is prime, and G is a finite group of order p(p+1). Prove that G has a normal subgroup of order either p or p+1. $\frac{Pf}{1}$. Let $n_p = |Sy|_p(G)|$. If $n_p = 1$, then by Sylow's 2nd theorem G has a normal subgroup of order p. So without loss of generality we can and will assume that $n_p \neq 1$. As $n_p = [G: N_G(P_0)]$ (where P, is a Sylow p-subgroup), we have np | p+1. By Sylocs's 3rd theorem, $n_p \equiv 1 \pmod{p}$. As $p \mid n_p = 1 \pmod{p}$, we get that $n_p \ge p+1$. Since $n_p | p+1$ and $n_p \ge p+1$, we

Lecture 08: Groups of order p(p+1) Thursday, October 12, 2017 10:34 PM that $n_p = p+1$. Suppose $Syl_p(G) = \{P_0, P_1, \dots, P_p\}$. Since P_i 's have prime order, for $i \neq j$ we have $P_i \cap P_j = \frac{2}{2}e_j^2$. Hence $\begin{vmatrix} P \\ UP_{1} \\ = | \{ \{ e \} \sqcup \sqcup (P_{1} \setminus \{ e \}) | = 1 + (P+1)(P-1) = P^{2}. \\ \sum_{i=0}^{n} | (P_{1} \setminus \{ e \}) | = 1 + (P+1)(P-1) = P^{2}.$ So # of elements of order p in $G = p^2 - 1$; and so $G = \frac{3}{2}geG | og = p_{3}^{2} \square H \quad \text{where } |H| = p(p+1) - (p^{2}-1)$ = P+1. (UP: Zej) Notice that he H ⇐ och) ≠ p. And so, ¥ ge G, gHg⁻¹= H. So it is enough to show H is a subgroup. Let he H\ zef; and suppose o(g) = p. Then $\{2e, h, g, hg^{-1}, \dots, g^{p-1}, hg^{-(p-1)}\} \subseteq H$ Claim. $H = ze, h, g, hg^{-1}, \dots, g^{-1}, h g^{-1}, \dots, g^{-1$ Pf. Companing their condinality, it is enough to show $g_i^{i}hg_i^{-i} \neq g_i^{j}hg_i^{-d}$ if $o \leq i < j \leq p-1$. If not, hg = g h for some o<k<p. Then $h \in C_{G}(\langle g, z \rangle) = N_{G}(\langle g, z \rangle)$. On the other hand, $[G: N_{G}(\langle g, z \rangle)] = p+1$ $= IG: \langle g \rangle].$ Sylw P-gp

Lecture 08: Groups of order p(p+1) 10:58 PM Thursday, October 12, 2017 This implies NG(g,>) = <g>. Therefore he <g>, which contradicts the assumption that $h\neq e$ and $o(h)\neq p$. $\underline{Chim} \cdot C(h) = H \cdot$ $\underline{Pf} : [G: C_{G}(h)] = |Cl(h)| = |H \setminus \{e_{i}\}| = p.$ by the previous $\left\{ \begin{array}{c} claim and \\ claim and \\ the fact that \\ gHg^{-1} = H \end{array} \right\}$ So $|C_{q}(h)| = p+1$. Hence $C_{q}(h) \subseteq G \setminus \{2g \in G \mid o(g) = p\}$; this implies $C_{\mathbf{G}}(h) \subseteq \mathsf{H}$. Now comparing their cardinality are get $C_{C}(h) = H$. Hence H is a normal subgroup. 🔳 Notice that we have proved more (for odd prime p): if $n_{p\neq 1}$, then $G \setminus \bigcup_{i=1}^{p} is a single conjugacy$ class. Using this you can prove that, if $n_{p} \neq 1$, then p is a Mersenne prime; that means p=2-1 for some $ne \mathbb{Z}^+$

Lecture 08: appendix on the size of HK
Monday, October 16, 2017 10:37 AM
Whenday, October 16, 2017 10:37 AM
When we were classifying groups of order pq, we used the following
formula for [HK] cohere H and K are subgroups of G:
IHKI =
$$\frac{|H| |K|}{|H \cap K|}$$
. We quaited out that this can be proved showing
 $H/Hn_K \rightarrow HK/K$, $h(HnK) \rightarrow hK$ is a bijectron.
Knowing the above map is a bijectrion, we get that
 $|H/Hn_K| = |HK/K|$; hence $|HK| = |HK/K| |K|$
 $= |H/HnK| |K|$
 $= |H/HnK| |K|$
 $= |H| |K|$.
Warning. In general HK is not a subgroup.
It is a subgroup if and only if it is symmetric; that
 $means (HK)^{-1} = HK$
 $Alternatively$
 HK is a subgroup if and only if $HK = KH$.