Lecture 03: Recall

Tuesday, October 3, 2017

10:58 PM

At the end of previous lecture we mentioned

Theorem. Let
$$A_{G,X} := 2 m: G \times X \longrightarrow X \mid m: group action g.$$

Then
$$\Psi: A_{G,X} \longrightarrow Hom(G, S_X), (\Psi(m)(g)(x) := m(g,x),$$

and
$$\Phi: \text{Hom}(G, S_X) \longrightarrow A_{G,X}, \quad (\Phi(f))(g,x) := (fg)(x)$$

are inverse of each other.

Outline of proof.

First we fix the group action m; and for simplicity instead of writing $(f(m))(g): X \rightarrow X$ we simply write $\xi(g)$; and instead of writing m(g,x) we simply write $g \cdot x$.

Then
$$(\xi(g_1) \circ \xi(g_2))(x) = \xi(g_1)(\xi(g_2)(x))$$

$$=\xi(g_1)(g_2\cdot x)=g_1\cdot (g_2\cdot x)$$

$$= (g_1g_2) \cdot x = \xi(g_1g_2)(x).$$

So
$$\xi(g_1) \circ \xi(g_2) = \xi(g_1g_2)$$
. And

$$\xi(e)(x) = e \cdot x = x$$
, which implies $\xi(e) = I_X$.

So
$$\xi(g) \circ \xi(g^{-1}) = \xi(e) = I_X$$
 and $\xi(g^{-1}) \circ \xi(g) = I_X$.

Therefore $\xi(g) \in S_X$ and $\xi: G \rightarrow S_X$ is a group hom.

Lecture 03: Cayley's theorem

Sunday, October 1, 2017

3:07 PM

This shows that 24 is well-defined.

We know that $S_X \cap X$ via $\sigma \cdot x := \sigma(x) \cdot S_0$ for any $f \in Hom(G, S_X)$ we get an induced group action $g * x := f(g) \cdot x = f(g)(x)$. This shows that Φ is a well-defined function.

Exercise. Check that $\Psi \cdot \Phi = I_{Hom}(G, S_X)$ and $\Phi \cdot \Psi = I_{A_{G,X}}$.

Theorem. Suppose G is a group. Then G can be embedded into the symmetric group S_G of G.

Pf. 1. G G by the left translation. This action gives us the following group homomorphism from G to SG:

 $\phi: G \rightarrow S_G$, $\phi(g) = l_g$ where $l_g: G \rightarrow G$,

 $f_g(g') = gg'$. And as we shall see $\ker \varphi = \xi e \xi$ and

so G can be embedded into Sq.

Pf. 2. (This is the same pf, but this time we do not refer to the left translation action. Knowing about action only makes the

Lecture 03: Cayley's theorem

Sunday, October 1, 2017

5:24 PM

argument a bit more natural.)

For any
$$g \in G$$
, let $g: G \rightarrow G$, $l_g(g') = gg'$.

$$\frac{\text{Pf of step 1}}{\text{globally}} \quad \left(\underset{g_1}{\text{lg olg}} \right) \left(\underset{g_2}{\text{globally}} \right) = \underset{g_1}{\text{lg of globally}} \left(\underset{g_2}{\text{lg of globally}} \right)$$

$$= \ell_{g_1}(g_2g') = g_1(g_2g') = (g_1g_2)g' = \ell_{g_1g_2}(g').$$

If of step 3
$$l_g \circ l_{g-1} = l_e = I_G$$
 and $l_g \circ l_g = l_e = I_G$ and $l_g \circ l_g = l_e = I_G$ $l_g \circ l_g \circ l_g = l_e = I_G$ $l_g \circ l_g \circ l_g$

g is in the kernel of this hom.
$$\Rightarrow l_g = I_G$$

$$\Rightarrow l_g(e) = I_g(e) \Rightarrow g \cdot e = e \Rightarrow g = e$$

Lecture 03: Orbits and stabilizers

Sunday, October 1, 2017

Suppose GAX. We would like to understand the G-orbits.

Def. The orbit of $x \in X$ is $G \cdot x = \{g \cdot x \mid g \in G\}$.

Lemma. Suppose GAX. Then the following are equivalent:

$$\bigcirc$$
 $G \cdot x_1 = G \cdot x_2$

$$b$$
 $x_1 \in G \cdot x_2$

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

$$\exists g_1, g_2 \in G, \quad x = g_1 \cdot x_1 = g_2 \cdot x_2$$

$$\forall g \in G$$
, $g \cdot x_1 = gg_1^{-1} \cdot g_1 x_1 = gg_1^{-1} \cdot g_2 x_2$

$$= (gg_1^1g_2) \cdot \times_2 \in G \cdot \times_2$$

So $G \cdot x_1 \subseteq G \cdot x_2$; by a similar argument we have

Corollary The set {G.x | xeX} of orbits is a partition

 $\frac{pp}{x}$. $\forall x \in X$, $x \in G \cdot x \Rightarrow \bigcup_{x \in X} G \cdot x = X$; now Lemma implies the claim.

Lecture 03: The quotient space

Monday, October 2, 2017 8:20

Def. Suppose GAX; the set of G-orbits is denoted by

of X and it is called the quotient of X by the G-action.

Example Suppose $H \leq G$. Then $H \curvearrowright G$ by the left translation

Then the H-orbits are exactly the right cosets of H.

And HG is the usual quotient of G by H.

Lemma. Suppose G X. Then, for any XEX,

is a subgroup of G. It is called the stabilizer subgroup of G with respect to χ .

 $\frac{\mathcal{P}}{g_{1} \cdot x_{0} = x_{0}}$ $g_{2} \cdot x_{0} = x_{0} \quad \Rightarrow \quad g_{2}^{-1} \cdot (g_{2} \cdot x_{0}) = g_{2}^{-1} \cdot x_{0} \quad \Rightarrow \quad e \cdot x_{0} = g_{2}^{-1} \cdot x_{0}$ $\Rightarrow \quad g_{2}^{-1} \cdot x_{0} = x_{0}$ $(g_{1}g_{2}^{-1}) \cdot x_{0} = g_{1} \cdot (g_{2}^{-1} \cdot x_{0}) = g_{1} \cdot x_{0} = x_{0}$

Theorem. (Orbit-Stabilizer theorem) Suppose $G \times X$. Then $\forall x \in X$, $G/G_X \xrightarrow{+} G \cdot x$, $g \cdot G \xrightarrow{} g \cdot x$ is a bijection.

The Well-defined and injective: garage Gx = ga Gx + g1 g2 e Gx

Lecture 03: Orbit-Stabilizer theorem

Monday, October 2, 2017 8:42 AM

$$g_{1}^{-1}g_{2} \in G_{x} \iff (g_{1}^{-1}g_{2}) \cdot x = x \iff g_{1} \cdot ((g_{1}^{-1}g_{2}) \cdot x) = g_{1} \cdot x$$

$$\iff g_{1} \cdot x = g_{2} \cdot x$$

Surjectivity is clear .

Def. GAX is called a free action if $\forall x \in X$, $G_x = {1}.$

P Give an example of a free action for any given group G.

B G G by the left translations.

So, if $H \leq G$, then, $\forall g \in G$, there is a bijection between H and Hg.

Lagrange's theorem Suppose G is a finite group and $H \leq G$. Then |G| = |G| |H|.

Pt. H G by the left translations and this action is free. Since G is a partition of G, we have

