1 Suppose R is a unital ring that is not necessarily commutative.

Prove that I is a both sided ideal of Mn(R) if and only if

 $\widetilde{I} = M_n(I)$ for some both sided ideal I of R.

(Remark. Proof of this result just needs a bit of patience with

matrix computations, but it is an important result. In particular, it

shows that Mn(C) has no proper non-zero both sideded ideal.)

(Hintolet engeMn(R) sit. the rigientry of eng is I and

the other entries are o. Then $e_{ij}e_{kl}=\begin{cases} e_{il} & \text{if } j\neq k, \\ e_{il} & \text{if } j=k. \end{cases}$

So, for $a = [a_{ij}]$, e_{kk} a $e_{\ell\ell} = \sum_{i,j} a_{ij}$ $e_{kk}e_{ij}$ $e_{\ell\ell}$ $= a_{k\ell} e_{k\ell}$

• Let $I := \frac{3}{2} \times \mathbb{R} \setminus \mathbb{X}$ is an entry of an element of $\widetilde{I}_{\frac{3}{2}}$.)

2 A unital ring R (not necessarily commutative) is called a division ring if $U(R) = R \setminus \frac{30}{3}$. (So a commutative ring is a division ring if and only if it is a field.)

Homework 8

Monday, December 4, 2017

11:16 AM

Let $H := \{ \begin{bmatrix} \frac{z}{\omega} & \omega \end{bmatrix} \in M_2(\mathbb{C}) \}$. Convience yourself that H

is a subring of M2(C). Prove that H is a division ring.

Show that H is not commutative.

[3] Convience yourself that $Q[\sqrt{2}] = \{a + \sqrt{2} b \mid a, b \in Q\}$ is a subring of \mathbb{R} . Let $\phi: Q[\sqrt{2}] \longrightarrow M_2(Q)$,

 $\phi(a+\sqrt{2}b):=\begin{bmatrix}a&b\\2b&a\end{bmatrix}.$

Prove that ϕ is a ring homomorphism, and deduce that $Q[\sqrt{2}] \simeq {ab} [ab] [a,beQ]$.

A Let I be the ideal generated by 2 and ∞ in $\mathbb{Z}[\infty]$. Prove that I is not a principal ideal.

Suppose R is a unital commutative ring. Prove that $R[x] = 2 \sum_{i=1}^{n} a_i x^i \mid a_i \in \mathbb{R}^x$, $a_1, ..., a_n \in Nil(R)$.

(b) Prove that Nil(R/Nil(R)) = 0.

6 Let $\omega := \frac{-1+i\sqrt{3}}{2}$ and $\mathbb{Z}[\omega] = \{a+b\omega \mid a,b\in\mathbb{Z}\}$.

(a) Let $N(a+b\omega) := (a+b\omega)(a+b\overline{\omega})$. Convience yourself that

Homework 8

Monday, December 4, 2017 2:36 PM

 $N(Z_1Z_2) = N(Z_1)N(Z_2)$ and $N(a+\omega b) = a^2 - ab + b^2$.

Prove that $\forall z_1, z_2 \in \mathbb{Z}[\omega], \exists q, r \in \mathbb{Z}[\omega] s.t.$

 $Z_1 = Z_2 \cdot q + r$ and $N(r) < N(Z_2)$.

- (b) Prove that Z[W] is a PID.
- (c) Prove that $\mathbb{Z}[\omega] = \{\pm 1, \pm \omega, \pm \omega^2\}$.

Extra. Can you use part (b) to show $x^3+y^3=z^3$ does not have a non-trivial solution in \mathbb{Z} ?