Homework 7

It is not easy to understand if a given presentation gives us the trivial gp or not.
In fact one can ask the following question: given a presentation $G=\langle X \mid R\rangle$ and a word v. Can cue give an algorithm to decide whether or not a given word ω repre. the same element of G as $v ?$ This is called the word problem. Novikov proved that the answer is NO!

1. Prove that $\left\langle a, b \mid a b^{2} a^{-1}=b^{3}, b a^{2} b^{-1}=a^{3}\right\rangle$ is the trivial gp.
(Hint. Consider $a^{2} b^{4} a^{-2}$ and its conjugate by b. Deduce $a \in C_{G}\left(b^{4}\right)$.)
2. Prove that $\langle a, b \mid[a, b]\rangle \simeq \mathbb{Z} \oplus \mathbb{Z}$.
(Hint. As usual first find an onto gp ham. $\phi:\langle a, b \mid[a, b]\rangle \rightarrow \mathbb{Z} \oplus \mathbb{Z}$;
Then consider $\theta: \mathbb{Z} \oplus \mathbb{Z} \longrightarrow\langle a, b \mid[a, b]\rangle, \theta(m, n)=a^{m} b^{n}$.)
3. Suppose X_{1} and X_{2} are two disjoint sets of symbols. Prove that

$$
\left\langle x_{1} \mid R_{1}\right\rangle *\left\langle x_{2} \mid R_{2}\right\rangle \simeq\left\langle x_{1} \sqcup x_{2} \mid R_{1} \sqcup R_{2}\right\rangle
$$

(Hint. First define $\theta_{i}:\left\langle x_{i} \mid R_{1}\right\rangle \rightarrow\left\langle x_{1} 山 x_{2} \mid R_{1} 山 R_{2}\right\rangle$;

Homework 7
.Then define $\theta:\left\langle x_{1} \mid R_{1}\right\rangle *\left\langle x_{2} \mid R_{2}\right\rangle \rightarrow\left\langle x_{1}\right| x_{2}\left|R_{1} \cup R_{2}\right\rangle$ using the universal property of the free product of two groups.

- Define $\phi:\left\langle x_{1} 山 X_{2} \mid R_{1} 山 R_{2}\right\rangle \rightarrow\left\langle X_{1} \mid R_{1}\right\rangle *\left\langle X_{2} \mid R_{2}\right\rangle$.
. Check $\theta \cdot \phi=$ id. and $\psi_{0} \theta=$ id.)

4. Prove that $G_{n}:=\left\langle s_{1}, \ldots, s_{n-1}\right| s_{i}^{2},\left(s_{i} s_{j}\right)^{2}$ for $\left.\left.|i-j|\right\rangle 1,\left(s_{i} s_{i+1}\right)^{3}\right\rangle$ is isomorphic to S_{n}.
(Hint 1. Consider $\sigma_{i}:=\left(\begin{array}{ll}i & i+1\end{array}\right)$ to get an onto group home.

$$
\phi: G_{n} \rightarrow S_{n} .
$$

2. By induction on n, show $\left|G_{n}\right| \leq n!$; here is one way:

Let H_{n} be the subgp of G_{n} that is generated by s_{1}, \ldots, s_{n-2}.
[2.a] Argue why there is an onto group ham. $G_{n-1} \rightarrow H_{n}$; and so by the induction hypothe. $\left|H_{n}\right| \leq(n-1)!$.
2.b) Show that

$$
G_{n} / H_{n}=\left\{H_{n}, S_{n-1} H_{n}, S_{n-2} S_{n-1} H_{n}, \cdots, S_{1} S_{2} \cdots S_{n-1} H_{n}\right\} .
$$

(And so $\left[G_{n}: H_{n}\right] \leq n$.) To show check $s_{i}: R H S=$ RHS .)

Homework 7
Monday, November 27, 2017 11:42 AM
5.(a) Prove that $\left\langle a, b \mid a^{2}, b^{2}\right\rangle \simeq$ Group of (Euclidean) symmetries of \mathbb{Z}.
(Hint:- You can use without proof that the group of symmetries of \mathbb{Z} is $G:=\{f: \mathbb{Z} \rightarrow \mathbb{Z} \mid f(x)=c x+d, c \in\{ \pm 1\}, d \in \mathbb{Z}\} ;$ and it is generated by $f(x)=-x$ and $g(x)=x+1$.

- Consider f and oof.
- Show $\left\langle a, b \mid a^{2}, b^{2}\right\rangle=\left\{(a b)^{2} \mid \tau \in \mathbb{Z}\right\} \cup\left\{a(a b)^{2} \mid \tau \in \mathbb{Z}\right\}$.)
(b) Prove that any group generated by two elements of order 2 is solvable.

6. Prove that $\left\langle\overline{\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]}, \overline{\left[\begin{array}{cc}1\end{array}\right]}\right\rangle \simeq \mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ where $\bar{g}:=g \xi \pm I\} \in \operatorname{PSL}(2, \mathbb{Z}):=S L_{2}(\mathbb{Z}) /\{ \pm I\}$.
(Hint. Consider the Möbius action of $\operatorname{PS}_{2}(\mathbb{R})$ on $\mathbb{R} \cup\{\infty\}$,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d}
$$

Let $\tau(z)=z+1$ and $\sigma(z)=\frac{-1}{z}$. Let $\omega:=\tau_{0} \sigma$. So $\omega(z)=-\frac{1}{z}+1$. Observe that $\omega^{3}(z)=z$. Consider

$$
\left.G_{1}=\langle\sigma\rangle, G_{2}=\langle\omega\rangle, X_{1}=(-\infty, 0], X_{2}=(0, \infty) \cup\{\infty\} .\right)
$$

$\left(\right.$ Remark. $\left.\left.\operatorname{PSL}(2, \mathbb{Z})=\left\langle\overline{\left[\begin{array}{ll}1 & 1 \\ 1\end{array}\right]}, \overline{[-1}{ }^{1}\right]\right\rangle \cdot\right)$

