Homework 6

Wednesday, November 15, 2017 11:44 AM

1. Suppose G is a finite group and $H \leq G$.

(b) Let
$$\pi: G \to G/_{\overline{\Phi}(G)}$$
 be the natural projection map. Suppose

In particular
$$\langle S \rangle = G \iff \langle S \backslash \Phi(G) \rangle = G$$
.

2. Suppose G is a finite group; and \$\Pi(G) is the Frattini subgroup of G.

- (a) Suppose P is a Sylow subgroup of E(G). Prove that Pag.
- (b) Prove that $\Phi(G)$ is nilpotent.

- 3. Suppose G is a finite p-group; and d(G) is the min. number of generators of G.
 - (a) Prove that d(G) = dim Z/77 (G/FIGGI)

Homework 6

Wednesday, November 15, 2017 12:12 PM

(b) Suppose S is a minimal generating set of G; that means $\langle S \rangle = G$ and $\langle S' \rangle \neq G$ if $S' \subsetneq S$.

Prove that |S| = d(G).

(c) Does part (b) hold for finite groups that are not p-groups; that means for a finite group H do we have $|S_{\pm}| = |S_{\pm}|$ if S_{\pm} and S_{\pm} are two minimal generating sets?

 $[\underline{\text{Hint}}(c) \ \mathbb{Z}/_{6\mathbb{Z}} \simeq \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}}.]$

4. Prove that, if G/ZCG) is nilpotent, then G is nilpotent.

5.6) Prove that G/ZG cannot be a non-trivial cyclic group.

- (b) Prove that any group of order p2 is abelian.
- (c) Suppose G is a non-abelian group of order p^3 . Prove that (c1) $Z(G) \simeq \mathbb{Z}_{p\mathbb{Z}}$.

(c2)
$$Z(G) = [G,G]$$
, and $G/_{Z(G)} \simeq \mathbb{Z}/_{PZ} \times \mathbb{Z}/_{PZ}$

(૯૩)	d(G)=2;	that means	G can be	gen. by 2	elements,
		but not l	by 1 elemen	41	
			U		

Wednesday, November 15, 2017

12.52 PM

6. Let $G:=GL_n(\mathbb{Z}/p_{\mathbb{Z}})$ be the set of nxn invertible matrices with entries in $\mathbb{Z}/p_{\mathbb{Z}}$. Let V be the n-dimensional vector Space $\mathbb{Z}/p_{\mathbb{Z}} \times ... \times \mathbb{Z}/p_{\mathbb{Z}}$. Let

 $X := \{(v_1, ..., v_n) \mid v_1 \neq 0; v_2 \notin \langle v_1 \rangle; v_3 \notin \langle v_1, v_2 \rangle; \}.$

...; v_n €<v₁,...,v_{n-1}>

For any $g \in GL_n(\mathbb{Z}/p_{\mathbb{Z}})$ and $(v_1, ..., v_n) \in X$, let

$$g \cdot (v_1, ..., v_n) := (gv_1, ..., gv_n) \cdot (x)$$

Convince yourself that (x) defines a group action G (X).

- (a) Prove that GAX transitively.
- (b) Prove that $G_{(e_1,\dots,e_n)} = 2I3$ where $2e_1,\dots,e_n$ is the standard basis of V.
- (c) Prove that $|GL_n(\mathbb{Z}/p\mathbb{Z})| = (P-1)(P-P)\cdots(P-P^{n-1})$ = $P^{\frac{n(n-1)}{2}}(P-1)(P^{n-1})\cdots(P-1)\cdots(P-1)$.
- (d) $X \in GL_n(\mathbb{Z}/p\mathbb{Z})$ is called unipotent if $(X-I)^n = 0$.

Suppose $U \leq GL_n(\mathbb{Z}/p_{\mathbb{Z}})$ and \forall ue U is unipotent. Prove

that $\exists g \in G, g Ug^{-1} \subseteq \{\begin{bmatrix} 1 & \times_{ij} \\ & 1 \end{bmatrix} \mid \times_{ij} \in \mathbb{Z}/P\mathbb{Z}\}$.

(Hint(d), show that $X \in GL_n(\mathbb{Z}/p_{\mathbb{Z}})$ is unipotent $\Longrightarrow o(x)$ is a power of P; and find a Sylow p-subgrp.)