Homework 4
. One of the important result in finite group theory is the following result of Burnside:

Burnside's normal p-complement theorem.
Suppose G is a finite group, $1 \neq P$ is a Sylow p-subgroup, and $P \subseteq Z\left(N_{G}(P)\right)$. Then $\exists N \triangleleft G$ st. $|N|=|G / P|$.

This is an extremely useful theorem; for instance try to use this to give a short of a result we have proved earlier: a group G of order $p(p+1)$ has a normal subgroup of order p or $p+1$. (This is not part of the problem). In this problem you will see the powerful combination of this theorem with the Schur-Zassenhaus theorem:

1. Suppose $\operatorname{god}(n, \varphi(n))=1$, and G is a group of order n. Prove that a group of order n is cyclic.
(Hint. Anth. observations: $\operatorname{gcd}(n, \varphi(n))=1 \Rightarrow n$ is square-free

$$
\cdot \operatorname{gcd}(n, \varphi(n))=1\} \Rightarrow \operatorname{gcd}(m, \Phi(n))=\operatorname{gcd}(m, \Phi(m))=\operatorname{gcd}(n, \varphi(m))=1 .
$$

- Use strong induction on n; and the mentioned theorems.)

Homework 4

As we have seen in class $\operatorname{Ant}(G) \curvearrowright\{H \mid H$ is a surge of $G\}$

$$
f \cdot H:=f(H) \text {. }
$$

Let $X:=\{H \mid H \leq G\}$. Then elements of $X^{\text {Aut(G) }}$ are called characteristic subgroups of G; that means $H \leq G$ is a characteristic subgroup if and only if , for any $f \in \operatorname{Aut}(G), f(H)=H$. Convince yourself that any characteristic subgroup is a normal subgroup.
2.(a) Suppose $N \nabla G$ and K is a characteristic subgroup of N. Prove that $K \nabla G$.
(b) We say a group H is characteristically simple if its only char. subgroups are $\{1\}$ and H.

Suppose N is a minimal normal subgroup of G; that means, if $K<G$ and $K \varsubsetneqq N$, then $K=\{1\}$, and $N \neq\{1\}$. Prove that N is characteristically simple.
3. Suppose G is a group of order $2^{k} \mathrm{~m}$ where m is odd.

Suppose a Sylow 2-subgraup P of G is cyclic. Prove that G has a characteristic subgroup of order m.

Hint. Point 1. Use the case of $k=1$, and show that $G \xrightarrow{\phi} S_{G} \xrightarrow{\epsilon}\{ \pm 1\} \quad \epsilon_{0} \phi$ is non-trivial.
Point 2. Suppose $\theta \in A u t(G)$. Show that the cycle type of $\phi(g)$ and $\phi(\theta(g))$ are the same. Conclude that ken $\epsilon \circ \phi$ is a characteristic subgp of index 2 .
Point 3. Use induction and deduce that there are char. subgps of order $2^{i} m$ for any $0 \leq i \leq k$.] (Please do not use Burnside's normal p-comply. theorem)
4.(a) Suppose P is a Sylow p-subgy of G, and $P \triangleleft G$. Prove that P is a characteristic subgroup of G.
(b) Suppose $H \triangleleft G$ and $\operatorname{god}(|H|, I G: H])=1$. Prove that H is a characteristic subgroup of G.
5. In this problem, you prove that $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ if $n \geq 7$.
(All the automorphisms of S_{n} are inner.)
(a) Suppose $\varphi \in A u t\left(S_{n}\right), n \geq 5$, and φ sends transpositions to

Homework 4
Friday, October 27, 2017 12:52 PM
transpositions; that means $|\operatorname{supp}(\varphi(a b))|=2$ for any $1 \leq a<b \leq n$.
Prove that φ is an inner automorphism.
Hint (O) Suppose τ_{1} and τ_{2} are two transpositions. Observe:
τ_{1} and τ_{2} do not commute if and only if $\left|\operatorname{supp}\left(\tau_{1}\right) \cap \operatorname{supp}\left(\tau_{2}\right)\right|=1$.
(2) Any transposition gives us an edge in the complete graph with n vertices; by assumption φ induces a bijection on the edges of the complete graph. (1) implies two edges with a common vertex are mapped to two edges with a common vertex. Use this to get a permutation σ on vertices.
(3) Show that for any transposition $\tau, \sigma \varphi(\tau) \sigma^{-1}=\tau$.I
(b) Prove that $\varphi\left(\sigma_{1}\right)$ and $\varphi\left(\sigma_{2}\right)$ are conjugate if and only if σ_{1} and σ_{2} are conjugate.
(c) Let T_{k} be the set of permutations with cycle type $\underbrace{2, \ldots, 2, \underbrace{1}_{n-2 k}, \ldots, 1}_{k}$; for instance T_{1} consists of transpositions. Show that

$$
\left|T_{k}\right|=n(n-1) \cdots(n-2 k+1) / k!2^{k} \geq \frac{n(n-1)}{2} \frac{(2 k-2)!}{k!\cdot 2^{k-1}} .
$$

(d) Prove that $\varphi\left(T_{1}\right)=T_{k}$ for some $1 \leq k \leq n / 2$. (Use part (b))
(e) Prove that $\varphi\left(T_{1}\right)=T_{1}$; and deduce that $\varphi \in \operatorname{Inn}\left(S_{n}\right)$.

Homework 4
6. In this problem, you prove that $\operatorname{Ant}\left(S_{6}\right) \neq \operatorname{Inn}\left(S_{6}\right)$.
(In this problem you can use the fact that A_{n} is simple if $n \geq 5$)
(a) Show that S_{5} has 6 Slow 5-subgroups. Deduce that S_{6} has a subgroup H which is isomorphic to S_{5} and acts transitively on $\{1,2, \cdots, 6\}$. And so Fix $\left(\sigma H \sigma^{-1}\right)=\varnothing$ for any $\sigma \in S_{6}$.
(b) Consider $S_{6} \curvearrowright \mathrm{~S}_{6} / \mathrm{H}$ by the left translations. Since $|H|=\left|S_{5}\right|$, we have $\left|S_{6 / H}\right|=6$. So the above action gives us a group homomorphism $\phi: S_{6} \rightarrow S_{6}$. Prove that φ is an isomorphism.
(c) Show that $F_{i x}(P(H)) \neq \varnothing$, and deduce φ is NOT an inner automorphism of S_{6}.

