Homework 4

Sunday, October 22, 2017

. One of the important result in finite group theory is the following result of Burnside:

Burnside's normal p-complement theorem.

Suppose G is a finite group, $1 \neq P$ is a Sylow p-subgroup, and $P \subseteq Z(N_G(P))$. Then $\exists N \triangleleft G$ s.t. |N| = |G/p|.

This is an extremely useful theorem; for instance try to use this to give a short of a result we have proved earlier:

a group G of order pcp+1) has a normal subgroup of order p or p+1. (This is not part of the problem). In this problem you will see the powerful combination of this theorem with the

Schur-Zassenhaus theorem:

1. Suppose $gcd(n,\varphi(n))=1$, and G is a group of order n. Prove that a group of order n is cyclic.

(<u>Hint</u>. Arith. observations: gcd (n, $\varphi(n)$)=1 \Rightarrow n is square-free

• gcd(n, P(n)) = 1 $\Rightarrow gcd(m, P(n)) = gcd(m, P(m)) = gcd(n, P(m)) = 1$.

. Use strong induction on n; and the mentioned theorems.)

Homework 4

Thursday, October 26, 2017 10:27 PM

As we have seen in class Aut(G) (27 2H | H is a subgp of G3 $f \cdot H := f(H)$

Let $X:= \{H \mid H \leq G\}$. Then elements of X are

called characteristic subgroups of G; that means

H < G is a characteristic subgroup if and only if

, for any fe Aut(G), f(H) = H. Convince yourself that any

characteristic subgroup is a normal subgroup.

- 2. @ Suppose NVG and K is a characteristic subgroup of N. Prove that KJG.
 - D We say a group H is characteristically simple if its only char subgroups are 213 and H.

Suppose N is a minimal normal subgroup of G; that means, if KOG and $K \leq N$, then K = 218, and $N \neq 218$. Prove that N is characteristically simple.

3. Suppose G is a group of order 2 m where m is odd.

Suppose a Sylow 2-subgroup P of G is cyclic. Prove that

G has a characteristic subgroup of order m.

Hint. Point 1. Use the case of k=1, and show that $C + S_C + 2 \pm 1$ $E \circ \phi$ is non-trivial.

Point 2. Suppose O∈ Aut (G). Show that the cycle type of the type of type

- 4.0 Suppose P is a Sylow p-subgp of G, and PaG. Prove that P is a characteristic subgroup of G.
 - (b) Suppose H & G and gcd (IHI, IG:H])=1. Prove that H
 is a characteristic subgroup of G.
- 5. In this problem, you prove that $Aut(S_n) = Inn(S_n)$ if $n \ge 7$.

 (All the automorphisms of S_n are inner.)
 - a Suppose $\varphi \in Aut(S_n)$, $n \ge 5$, and φ sends transpositions to

parts of is an arbitrary element of Aut(S.)

transpositions; that means $|Supp(\varphi(a b))| = 2$ for any $1 \le a < b \le n$.

Prove that q is an inner automorphism.

I Hint O Suppose T, and T2 are two transpositions. Observe:

The and T_2 do not commute if and only if $|\sup(T_1) \cap \sup(T_2)| = 1$. The amplete graph with T_2 induces; by assumption T_2 induces a dijection on the edges of the complete graph. It implies two edges with a common vertex are mapped to two edges with a common vertex. Use this to get a permutation or on vertices.

- 3 Show that for any transposition τ , $\sigma \varphi(\tau) \sigma^{-1} = \tau$.
- D Prove that $9(0_1)$ and $9(0_2)$ are conjugate if and only if 0_1 and 0_2 are conjugate.
- C Let Tk be the set of permutations with cycle type 2,...,2,1,...,1; k n-2k for instance T1 consists of transpositions. Show that

$$|T_k| = n(n-1) \cdots (n-2k+1) / k! 2^k \ge \frac{n(n-1)}{2} \frac{(2k-2)!}{k! \cdot 2^{k-1}}$$

- There that $\varphi(T_1) = T_k$ for some $1 \le k \le n_2$. (Use part (1))
- @ Prove that $P(T_1) = T_1$; and deduce that $P \in Inn(S_n)$.

Homework 4

Friday, October 27, 2017

 $\underline{6}$. In this problem, you prove that $\operatorname{Aut}(S_6) \neq \operatorname{Inn}(S_6)$.

(In this problem you can use the fact that A_n is simple if $n \ge 5$)

- Show that S_5 has 6 Sylow 5-subgroups. Deduce that S_6 has a subgroup H which is isomorphic to S_5 and acts transitively on §1,2,...,6§. And so $Fix(σ H σ^{-1}) = ∅$ for any $σ∈ S_6$.
- (b) Consider $S_6 \cap S_6/H$ by the left translations. Since $|H| = |S_5|$, we have $|S_6/H| = 6$. So the above action gives us a group homomorphism $\varphi: S_6 \to S_6$. Prove that φ is an isomorphism.
- © Show that $Fix(P(H)) \neq \emptyset$, and deduce P is NOT an inner automorphism of S_6 .