Wednesday, October 18, 2017 7:12

- 1. Suppose p and q are distinct primes. Prove that a group of order p^2q is not simple.
- 2. Prove that a group of order 36 is not simple.

(Hint. Suppose G is simple; find | Syl (G));

consider G Syl3(G) and show it should have a non-trivial kernel.)

3. Suppose f, , fe & Hom (H, Aut (N)). Suppose there is an

commuting diagram. Let $\sigma: H \rightarrow Aut(N)$ be the

following function: $\sigma(h) = f_2(h) \cdot f_1(h)^{-1}$

- a Prove that or (h) e Inn (N) for any he H.
- D Prove that, $\forall h_1, h_2 \in H$, $\sigma(h_1, h_2) = \sigma(h_1) \circ f(h_1) \circ \sigma(h_2) \circ f_1(h_1)^{-1}$

(1-cocycle relation)

(Hint @ Show $\phi(h,1)=(h,n(h));$ Consider $\phi((h,1)(1,n)(h,1)^{-1})$.

Wednesday, October 18, 2017

0.00 PM

4. ⓐ Show that the group $\mathrm{Aut}(\mathbb{Z}/_{n\mathbb{Z}})$ of automorphism of the cyclic group $\mathbb{Z}/_{n\mathbb{Z}}$ is isomorphic to the group $(\mathbb{Z}/_{n\mathbb{Z}})^{\times}$ of units of the ring $\mathbb{Z}/_{n\mathbb{Z}}$. (Recall that

$$\left(\mathbb{Z}/_{n}\mathbb{Z}\right)^{x} = \left\{x \in \mathbb{Z}/_{n}\mathbb{Z} \mid \exists y \in \mathbb{Z}/_{n}\mathbb{Z}, xy = 1\right\}$$

And $\alpha + n \mathbb{Z} \in \mathbb{Z}/n\mathbb{Z} \xrightarrow{\times} \gcd(\alpha, n) = 1$

(b) Prove that a semidirect product $\mathbb{Z}/_{m}\mathbb{Z}\times\mathbb{Z}/_{n}\mathbb{Z}$ is definitely abelian if and only if

gcd $(m, \varphi(n)) = 1$, where $\varphi(n)$ is the Euler

$$\varphi$$
-function. (Recall that $\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$.)

5. Suppose $N_1, ..., N_k$ are normal subgroups of G, and

, for any i, $N_i \cap N_1 \cdots N_{i-1} N_{i+1} \cdots N_k = 218$. Prove that

$$N_1 \times N_2 \times \cdots \times N_k \longrightarrow N_1 \cdot N_2 \cdot \cdots \cdot N_k$$

$$(\chi_1, \chi_2, \dots, \chi_k) \longmapsto \chi_1, \chi_2, \dots, \chi_k$$

is a group isomorphism.

Friday, October 20, 2017

10:07 AM

6. Suppose in a group G the following property holds:

$$(*)$$
 $H \not\subseteq G \Rightarrow H \not\subseteq N_G(H)$.

@ Prove that all the Sylow subgroups are normal.

Deduce that Yp 11G1, there is a unique

Sylow p-subgp Pp.

D Prove that G ~ II Pp PIIGI

(Hint. & PeSyla), what do we know about Ng(Ng(P))?

- · Use previous problem.)
- 7. Suppose A is an abelian normal subgroup of G. Let H = G/A.

Suppose $G = \coprod_{i=1}^{m} g_i A$ (so |H| = m.). Let $h_i := g_i A \in H$.

For any i, j, $g_i A \cdot g_j A = g_{k(i,j)}$ A for some k(i,j)

 \Rightarrow $g_k^{-1} g_i g_j \in A$. So we get a function

c: HxH -> A, c(h;,hj) := g_k(i,j) g;gj.

(c depends on the choice of representatives g_i 's; think about g_i 's as a section; that means $s: H \rightarrow G$, $sch_i = g_i$; and notice $sch_i A = h_i$)

Friday, October 20, 2017

11:49 AM

Notice that GAA by conjugation, and, since A is abelian,

A is in the kernel of this action; this implies H=G/A acts on

A. For h = gA and aeA, we let $ha := gag^{-1}$.

(so hy(hza) = hihza as it is an action; and

 $\frac{h}{a_1a_2} = \frac{ha_1ha_2}{a_1}.$

(a) Prove that for any h, h, h, h, e H we have

 $c(h_1h_2, h_3) = c(h_1, h_2h_3) = c(h_1, h_2h_3) = c(h_2, h_3)$

[H is better to use the section $s: H \rightarrow G$, $s(h_i) = g_i$; then $s(h_2) = s(h_1h_2) c(h_1,h_2)$.

 $(s(h_1) \ s(h_2)) \ s(h_3) = s(h_1) \ (s(h_2) \ s(h_3))$

 $\stackrel{?}{\Longrightarrow} S(h_1h_2) C(h_1,h_2) S(h_3) = S(h_1) S(h_2h_3) C(h_2,h_3)$

 $\frac{?}{\Rightarrow}$ sch₁h₂) sch₃) $\frac{h_3^{-1}}{h_3^{-1}}$ c(h₁,h₂) = sch₁h₂h₃) c(h₁,h₂h₃) c(h₂,h₃)

(This is called the 2-cocycle relation.)

(b) Prove that the short exact sequence $1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1$

splits if and only if I a function a: H -> A such that

$$c(h_1,h_2) = \int_{-\infty}^{-1} \alpha(h_1) \alpha(h_2) \alpha(h_1h_2)^{-1}$$

Friday, October 20, 2017 12:19 PM

[Hint (2) Suppose 24: H-+ G is the splitting homomorphism. Then $\forall h \in H$, $\Upsilon(h) A = S(h) A$. Let $\alpha: H \rightarrow A$, $\alpha(h) := \Upsilon(h)^{-1}S(h)$. Use $s(h_1) s(h_2) = s(h_1h_2) c(h_1,h_2)$ to check the relation.

(Let 24(h) := s(h) a(h)-1. Use the given relation to show 24: H -> G is a group hom. And notice 45(h) A = h.]

(This is called the 2-boundary relation.)

(c) Suppose gd(IAI, IHI)=1. Prove that a 2-cocyle c:HxH-xA

is a 2-boundary; and so $1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1$

splits. (The abelian case of the Schur-Zassenhaus theorem.)

[Hint: The trick is "taking average"; in this part, proof would be more

clear if we use + for the operation in A (notice that A is abelian.). So

c satisfies: $c(h_1h_2, h_3)_+$ $c(h_1, h_2) = c(h_1, h_2h_3) + c(h_2, h_3)$.

Let $\alpha(h) := \frac{1}{|H|} \sum_{h_1 \in H} c(h_1, h)$ (why does it make sense? Here is where we are us Here is where we are using god (IAI, IHI) = 1.)

$$\text{implies } (\text{cohy?})$$

$$\frac{1}{|H|} \sum_{h_1 \in H} c(h_1 h_2, h_3) + \sum_{h_3 \in H} c(h_1, h_2) = \frac{1}{|H|} \sum_{h_1 \in H} c(h_1, h_2) + c(h_2, h_3) + c(h_2, h_3) + c(h_2, h_3) + c(h_2, h_3) + c(h_2, h_3)$$

$$= \alpha(h_2 h_3) + c(h_2, h_3) \cdot \mathbf{j}$$