Homework 3

1. Suppose p and q are distinct primes. Prove that a group of of order $p^{2} q$ is not simple.
2. Prove that a group of order 36 is not simple.
(Hint. Suppose G is simple; find $\left|S_{y}\right|_{3}(G) \mid$;
consider $G \curvearrowright \operatorname{Syl}_{3}(G)$ and show it should have a
non-trivial kernel.)
3. Suppose $f_{1}, f_{2} \in \operatorname{Hom}(H, \operatorname{Aut}(N))$. Suppose there is an isomorphism $\phi: H \alpha_{f_{1}} N \rightarrow H{\underset{p}{2}} N \quad 1 \rightarrow N \rightarrow H \alpha_{p_{1}} N \rightarrow H \rightarrow 1$ such that \otimes is a
 commuting diagram. Let $\sigma: H \rightarrow \operatorname{Aut}(N)$ be the following function: $\quad \sigma(h)=f_{2}(h) \cdot f_{1}(h)^{-1}$.
(a) Prove that $\sigma(h) \in \operatorname{Inn}(N)$ for any $h \in H$.
(b) Prove that, $\forall h_{1}, h_{2} \in H$,

$$
\sigma\left(h_{1} h_{2}\right)=\sigma\left(h_{1}\right) \circ f_{1}\left(h_{1}\right) \cdot \sigma\left(h_{2}\right) \circ f_{1}\left(h_{1}\right)^{-1}
$$

(1-cocycle relation)
(Hint (a) Show $\phi(h, 1)=(h, n(h))$; Consider $\phi\left((h, 1)(1, h)(h, 1)^{-1}\right)$.

Homework 3
4.(a) Show that the group $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ of automorphism of the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is isomorphic to the group $(\mathbb{Z} / n \mathbb{Z})^{x}$. of units of the ring $\mathbb{Z} / n \mathbb{Z}$. (Recall that

$$
(\mathbb{Z} / n \mathbb{Z})^{x}=\{x \in \mathbb{Z} / n \mathbb{Z} \mid \exists y \in \mathbb{Z} / n \mathbb{Z}, x y=1\}
$$

And $a+n \mathbb{Z} \in(\mathbb{Z} / n \mathbb{Z})^{x} \Longleftrightarrow \operatorname{gcd}(a, n)=1$.)
(b) Prove that a semidirect product $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ is definitely abelian if and only if $\operatorname{gcd}(m, \varphi(n))=1$, where $\varphi(n)$ is the Euler φ-function. (Recall that $\varphi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{x}\right|$.)
5. Suppose N_{1}, \ldots, N_{k} are normal subgroups of G, and , For any $i, N_{i} \cap N_{1} \cdots N_{i-1} N_{i+1} \cdots N_{k}=\{1\}$. Prove that

$$
\begin{aligned}
& N_{1} \times N_{2} \times \cdots \times N_{k} \longrightarrow N_{1} \cdot N_{2} \cdots N_{k} \\
& \left(x_{1}, x_{2}, \cdots, x_{k}\right) \longmapsto x_{1} \cdot x_{2} \cdots \cdot x_{k}
\end{aligned}
$$

is a group isomorphism.

Homework 3
6. Suppose in a group G the following property holds:

$$
\text { (*) } H \underset{\neq G}{\Longrightarrow} H \not N_{G}(H) \text {. }
$$

(a) Prove that all the Sylow subgroups are normal.

Deduce that $\forall p||G|$, there is a unique Sylow p-subgp P_{p}.
(b) Prove that $G \simeq \prod_{P l \mid G I} P_{P}$.
(Hint. If $P \in S_{y_{p}}(G)$, what do we know a bout $N_{G}\left(N_{G}(P)\right)$?

- Use previous problem.)

7. Suppose A is an abelian normal subgroup of G. Let $H:=G / A$.

Suppose $G=\sum_{i=1}^{m} g_{i} A($ so $|H|=m$.$) . Let h_{i}:=g_{i} A \in H$.
For any $i, j, \quad g_{i} A \cdot g_{j} A=g_{k(i, j)} A$ for some $k(i, j)$
$\Rightarrow g_{k}^{-1} g_{i} g_{j} \in A$. So we get a function

$$
c: H \times H \rightarrow A, c\left(h_{i}, h_{j}\right):=g_{k(i, j)}^{-1} g_{i} g_{j}
$$

(c depends on the choice of representatives $g_{i}^{\prime} s$; think about g_{i} 's as a section; that means $s: H \rightarrow G, s\left(h_{i}\right)=g_{i}$; and notice $s(h) A=h$.)

Notice that $G \curvearrowright A$ by conjugation, and, since A is abelian, A is in the kernel of this action; this implies $H=G / A$ acts on A. For $h=g A$ and $a \in A$, we let $h_{a}:=g a g^{-1}$. (so $h_{1}\left(h_{2} a\right)={ }^{h_{1} h_{2}} a$ as it is an action; and

$$
\left.h_{\left(a_{1} a_{2}\right)}=h_{a_{1}}^{h_{2}} \cdot\right)
$$

(a) Prove that for any $h_{1}, h_{2}, h_{3} \in H$ we have

$$
c\left(h_{1} h_{2}, h_{3}\right)^{h_{3}^{-1}} c\left(h_{1}, h_{2}\right)=c\left(h_{1}, h_{2} h_{3}\right) c\left(h_{2}, h_{3}\right)
$$

[H is better to we the section $s: H \rightarrow G, s\left(h_{i}\right)=g_{i}$; then

$$
\begin{aligned}
& \quad s\left(h_{1}\right) s\left(h_{2}\right)=s\left(h_{1} h_{2}\right) c\left(h_{1}, h_{2}\right) . \\
& \left(s\left(h_{1}\right) s\left(h_{2}\right)\right) s\left(h_{3}\right)=s\left(h_{1}\right)\left(s\left(h_{2}\right) s\left(h_{3}\right)\right. \\
& \stackrel{?}{\Rightarrow} \quad s\left(h_{1} h_{2}\right) c\left(h_{1}, h_{2}\right) s\left(h_{3}\right)=s\left(h_{1}\right) s\left(h_{2} h_{3}\right)\left(h_{2}, h_{3}\right) \\
& \stackrel{?}{\Rightarrow} \quad s\left(h_{1} h_{2}\right) s\left(h_{3}\right) h_{3}^{-1} c\left(h_{1}, h_{2}\right)=s\left(h_{1} h_{2} h_{3}\right) c\left(h_{1}, h_{2} h_{3}\right) c\left(h_{2}, h_{3}\right) \\
& \left.\stackrel{?}{\Rightarrow} \quad s\left(h_{2} h_{2} h_{3}\right)<\left(h_{1} h_{2}, h_{3}\right)_{3}^{-1}\left(h_{1}, h_{2}\right)=s\left(h_{1} h_{2} h_{3}\right) c\left(h_{1}, h_{2} h_{3}\right)<\left(h_{2}, h_{3}\right) \cdot\right]
\end{aligned}
$$

(This is called the 2-cocycle relation.)
(b) Prove that the short exact sequence $1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1$ splits if and only if \exists a function $\alpha: H \rightarrow A$ such that

$$
c\left(h_{1}, h_{2}\right)={ }^{h_{2}^{-1}} \alpha\left(h_{1}\right) \alpha\left(h_{2}\right) \alpha\left(h_{1} h_{2}\right)^{-1}
$$

IHint. $(\underset{c}{(}$) Suppose $\psi: H \rightarrow G$ is the splitting homomorphism. Then
$\forall h \in H, \quad \psi(h) A=s(h) A$. Let $\alpha: H \rightarrow A, \alpha(h):=\psi(h)^{-1} s(h)$.
Use $s\left(h_{1}\right) s\left(h_{2}\right)=s\left(h_{1} h_{2}\right) c\left(h_{1}, h_{2}\right)$ to check the relation.
(\Leftarrow) Let $\psi(h):=s(h) \alpha(h)^{-1}$. Use the given relation to show $\psi: H \rightarrow G$ is a group hoo. And notice $\psi(h) A=h . I$
(This is called the 2 -boundary relation.)
(c) Suppose $\operatorname{god}(|A|,|H|)=1$. Prove that a 2-cocyle $c: H x H \rightarrow A$ is a 2-boundary; and so $\quad 1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1$
splits. (The abelian case of the Schur-Zassenhaus theorem.)
[Hint: The trick is "taking average"; in this part, proof would be more clear if we use + for the operation in A (notice that A is abelian.). So c satisfies: $\quad c\left(h_{1} h_{2}, h_{3}\right)+{ }^{h_{3}^{-1}} c\left(h_{1}, h_{2}\right)=c\left(h_{1}, h_{2} h_{3}\right)+c\left(h_{2}, h_{3}\right)$.

Let $\alpha(h):=\frac{1}{|H|} \sum_{h_{1} \in H} c\left(h_{1}, h\right) \quad \begin{aligned} & \text { (why does it make sense? } \\ & \text { Here is where we are using }\end{aligned}$ Here is where we are using $\operatorname{gcd}(|A|,|H|)=1$.)

* implies (cony?)

$$
\begin{aligned}
& \frac{\frac{1}{|H|} \sum_{h_{1} \in H} c\left(h_{1} h_{2}, h_{3}\right)}{\sum_{\alpha\left(h_{3}\right)}^{h_{3}^{-1}\left(\frac{1}{|H|} \sum_{h_{1} \in H} c\left(h_{1}, h_{2}\right)\right)}}+=\underbrace{\frac{1}{|H|} \sum_{h_{1} H H} c\left(h_{1}, h_{2} h_{3}\right)}+c\left(h_{2}, h_{3}\right) \\
&\left.=\alpha\left(h_{2} h_{3}\right)+c\left(h_{2}, h_{3}\right) \cdot\right]
\end{aligned}
$$

