Homework 2
Product, October 13, 2017 22:10 AM
1. (Double cosets) Suppose G is a group, and H, K
$$\leq$$
 G. For any
g \in G, let Hg K = 2 hg k | heH, keK3. Notice that
H \cap G/K by left translations, and H \in K by right
translations. Convince yourselves that
Hg K = union of elements of the H-orbit of g K
and
Hg K = union of elements of the K-orbit of Hg.
(a) Show that 2 Hg K | g \in G is a partition of G.
This partition is denoted by HG/K.
(b) Shows that there are bijections between the quotient spaces
H (G/K), (HG)/K, and HG/K.
(c) Shows that H/Hn gKg⁻¹ \longrightarrow Hg K/K /
h (Hn g Kg⁻¹) \mapsto hg K
is a bijection; in particular, if IGI<00 then
IHg K = IK IIHI / IHn g Kg⁻⁴].
(d) Let G = SL₂(Z/_{FZ}) and B = 2 [$_{0}^{\infty}$ $_{1}^{\infty}$ | $a \in (Z/_{FZ})^{\times}$, be Z_{FZ}^{-2} .

Homework 2 Friday, October 13, 2017 12:27 AM (Hint For part (1) notice that B A projective space P(F²) has two orbits: $\frac{1}{2}[(1,0)]$ and $\frac{1}{2}[(a,1)] = \frac{7}{3}$ And $\frac{1}{2}(\frac{7}{B})$ is in bijection with the projective space $\mathbb{P}(\frac{7}{2})$. Here $\mathbb{P}(\mathbb{P}^2) = \mathbb{E}[(a,b)] | (a,b) \in \mathbb{P}^2 \setminus \mathbb{E}(0,0) \mathbb{E} \mathbb{E}$ where [(a,b)] is the line which passes through (0,0) and (a,b).) 2. Suppose G is a group, and IGI = p(p+1) where p is an odd prime. Suppose G has more than I Sylow p-subgroup. Prove that p is a Mersenne prime; that means $p = 2^{n} - 1$ for some positive integer n. (<u>Hint</u>. Go over the proof presented in class, use Cauchy's theorem, and the fact that 2 (p+1.) 3. Suppose G is a finite group, and NAG. Let PESyl (N). Prove that G=NG(P) N. (<u>Hint</u> Show that G (Jyl (N) by conjugation; and then use Sylow's 2nd theorem.)

Homework 2 Friday, October 13, 2017 12:36 AM 4. Suppose GAX transitively . Prove that the kernel of this group action is the normal core cor(Gx) of the stabilizer group of a point xeX. 5. Suppose G is a group of order pql where p,q, and l are distinct prime numbers. Prove that G has a normal subgroup of prime order. (Hint. Using the contrary assumption, show $|Sy|_{\ell}G| = pq$, $|Sy|_{q}G| \ge p$, $|Sy|_{p}G| \ge q$. And get a lower bound larger that IGI for 12gEG | org) is either p, or q, or LS [.) 6. Suppose G is a finite p-group and zez ≠ N ≤ G. Prove that NnZ(G) ≠ ?e}. 7. Suppose G is a finite group, $H \triangleleft G$, and p is a prime factor of 141. @ Suppose PE Sylp(G) and QESylp(H). Prove that $\exists g \in G \quad st \quad Q = g P g^{-1} \cap H$

Homework 2 Friday, October 13, 2017 11:52 AM (Prove that the following is a well-defined surjective function $Syl_p(G) \xrightarrow{\Phi} Syl_p(H)$, P 1 PnH. \bigcirc For $\operatorname{PeSyl}_{p}(G)$, show that $G = N_{G}(\operatorname{PnH})H$, and conclude $|Sy|_{P}(G)| = \frac{|N_{G}(P_{n}H)|}{|N_{G}(P)|} \cdot \frac{|H|}{|N_{H}(P_{n}H)|}$ (Prove that |Sylp(H)| | Sylp(G)|.