Homework 1

1. Let S_{n} be the symmetric group of $\{1,2, \ldots, n\}$. For any $\sigma \in S_{n}$, let $m_{\sigma}:=|\{i \in\{1,2, \cdots, n\} \mid \sigma(i)=i\}|$. Find $\sum_{\sigma \in S_{n}} m_{\sigma}$.
2. Let P_{n} be the regular n-gan with vertices

$$
1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}
$$

where $\zeta=e^{2 \pi i / n}$.

Let $\tau: P_{n} \longrightarrow P_{n}$ be the restriction of the rotation by angle $\frac{2 \pi}{n}$ around the origin; and $\sigma: P_{n} \rightarrow P_{n}$ be the restriction of the reflection about the x-axis. Let $D_{2 n}$ be the combinatorial symmetries of P_{n}.

- (Rigidity) Convince yourself that, if $g_{1}, g_{2} \in D_{2 n}$ and $g_{1}(1)=g_{2}(1)$ and $g_{1}(\zeta)=g_{2}(\zeta)$, then $g_{1}=g_{2}$.
- Prove that, if $g \in D_{2 n}$, then either $g=\tau^{i}$ or $g=\sigma \tau^{i}$ for some $0 \leq i \leq n-1$. And so

$$
D_{2 n}=\left\{1, \tau, \cdots, \tau^{n-1}, \sigma, \sigma \tau, \ldots, \sigma \tau^{n-1}\right\}
$$

- Prove that $\sigma \tau \sigma^{-1}=\tau^{-1}$.

Homework 1
3. In class, we will prove that, if G is a finite group and H is a proper subgroup, then $G \neq \bigcup_{g \in G} g H g^{-1}$. Is this true for infinite groups?
4. Let $S L_{2}(\mathbb{R})$ be the set real 2×2 matrices with determinant 1 .

For $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{R})$ and $z \in \mathbb{C}$, let
$\otimes\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot z:=\frac{a z+b}{c z+d}$.
(a) Prove that \otimes defines a group action $S L_{2}(\mathbb{R}) \curvearrowright \mathbb{C}$.
(b) Convince yourself that $\operatorname{lm}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot z\right)=\frac{\operatorname{lm}(z)}{|c z+d|^{2}}$.

Prove that $\mathrm{SL}_{2}(\mathbb{R})$ has three orbits:
the upper half plane \mathcal{H}, the real axis, and the lower half plane \mathcal{H}.
(c) Show that the stabilizer of i is the special orthogonal group $\mathrm{SO}_{2}(\mathbb{R}):=\left\{g \in S L_{2}(\mathbb{R}) \mid \quad g g^{t}=I\right\}$.
5. Recall that a group G is called simple if the only normal subgps of G are $\{e\}$ and G. Suppose G is a simple group and H is a proper subgroup of index n. Prove that G can be embedded into S_{n}. (Hint. Consider $G \cap G / H$.)
6. Let G be a group, and X be a finite set.

Let $L^{2}(X):=\{f: X \rightarrow \mathbb{C} \mid f$ is any function $\}$, and

$$
\left\langle f_{1}, f_{2}\right\rangle:=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)}
$$

Convince yourself that $L^{2}(X)$ is just the vector space $\mathbb{C}^{|X|}$
(list elements x_{1}, \ldots, x_{n} of X and think about

$$
\begin{aligned}
L^{2}(x) & \longrightarrow \mathbb{C}^{|x|} \\
f & \left.\longmapsto\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \cdot\right)
\end{aligned}
$$

Suppose $G \curvearrowright X$.
(a) Prove that the following defines an action $G \curvearrowright L^{2}(X)$:

$$
(g * f)(x):=f\left(g^{-1} \cdot x\right) .
$$

(b) Prove that, $\forall f_{1}, f_{2} \in L^{2}(X), \forall g \in G,\left\langle g * f_{1}, g * f_{2}\right\rangle=\left\langle f_{1}, f_{2}\right\rangle$ (we say it is a unitary action.)
(C) Convince yourself that, $\forall g \in G$,

$$
\lambda_{g}: L^{2}(X) \rightarrow L^{2}(X), \lambda_{g}(f):=g * f
$$

is a linear map. Prove that

$$
\operatorname{tr}\left(\lambda_{g}\right)=\# \text { of the fixed points of } g
$$

(that means $|\{x \in X \mid g \cdot x=x\}|)$.
(Hint. Use the following basis for $L^{2}(X):\left\{\delta_{x}\right\}_{x \in X}$ where

$$
\delta_{x}: x \rightarrow \mathbb{C}, \delta_{x}\left(x^{\prime}\right)= \begin{cases}1 & \text { if } x=x^{\prime} \\ 0 & \text { if } \left.x \neq x^{\prime} .\right)\end{cases}
$$

Homework 1
7. Suppose G is a finite group, $C \subseteq \mathbb{R}^{n}$ is a convex subset; that means, if $p, q \in C$, then the segment $p q$ is in C. Suppose $G \curvearrowright C$ by affine actions; that means $\forall p, q \in C, \forall t \in[0,1], \forall g \in G$,

$$
g \cdot(t p+(1-t) q)=t \quad g \cdot p+(1-t) g \cdot q
$$

Prove that G has a fixed point; that means

$$
\exists x \in C \text { st. } \forall g \in G, g \cdot x=x \text {. }
$$

(Hint. (1) Suppose $c_{1}, \ldots, c_{n} \in C$. By the convexity of C, using induction show the average $\frac{1}{n}\left(c_{1}+c_{2}+\cdots+c_{n}\right)$ is in C.
(2) Take $y \in C$, and let x be the average of the G-orbit of y. Prove that x is a fixed point of G.)
8. Suppose G is a finite subgroup of the group $G L(\mathbb{R})$ of $n \times n$ real invertible matrices. Prove that there is an inner product on \mathbb{R}^{n} which is G-invariant.
(Recall. $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is called an inner product if
(a) $\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle$
(c) $\langle v, v\rangle\rangle 0$
(b) $\left\langle v, c_{1} w_{1}+c_{2} w_{2}\right\rangle=c_{1}\left\langle v, w_{1}\right\rangle+c_{2}\left\langle v, w_{2}\right\rangle$ if $v \neq 0$.
(d) $\langle v, w\rangle=\langle w, v\rangle$

Homework 1
Wednesday, October 4, 2017 11:58 AM
for instance $\quad\left(a_{1}, \cdots, a_{n}\right) \bullet\left(b_{1}, \ldots, b_{n}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$ is an inner product.)
(Hint. Define $\langle v, w\rangle:=\frac{1}{|G|} \sum_{g \in G} g v \cdot g w$
Che average of the standard inner product along the G-orbits of v and w.) ; you have to show \langle,$\rangle is$ an inner product and $\langle g v, g w\rangle=\langle v, w\rangle$.)
[This problem is extremely useful as it implies: if $V \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} which is invariant under G (that means $\forall v \in V \forall g \in G$, we have $g \cdot v \in V$.) then $V^{\perp}:=\left\{w \in \mathbb{R}^{n} \mid \forall v \in V,\langle w, v\rangle=0\right\}$ is also G-invariant, and $V \oplus V^{\perp}=\mathbb{R}^{n}$.]
9. In class, we recalled that $c: G \longrightarrow$ Aut $(G), c(g)=c g$ where $c_{g}\left(g^{\prime}\right)=g g^{\prime} g^{-1}$ is a group homomorphism, the image of c is called the group of inner automorphisms of G, and it is denoted by $\operatorname{Inn}(G)$. (a) Prove that $\operatorname{ker}(c)$ is the center $Z(G)$ of G.

Homework 1
(b) Deduce that $\operatorname{Inn}(G) \simeq G / Z(G)$
(c) Prove that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$.
(d) Prove that $|Z(\operatorname{Aut}(G))| \leq|\operatorname{Ham}(G, Z(G))|$; in particular. if either $Z(G)=1$ or G is perfect (that means $G=[G, G])$, then $Z(\operatorname{Aut}(G))$ is trivial.
(Hint (1) $\forall g \in G$ and $\forall \phi \in \operatorname{Aut}(G), \quad \phi \circ C_{g} \cdot \phi^{-1}=C_{\phi(g)}$;
(2) If $\phi \in Z(\operatorname{Aut}(G))$, then $C_{g}=C_{\phi(g)}$; and so $\phi(g)=g \eta(g)$ for some $\eta(g) \in Z(G)$.
(3) Prove $\eta \in \operatorname{Ham}(G, Z(G))$.)
10. Recall that we say $G \curvearrowright X$ transitively if $\left|G^{X}\right|=1$. A transitive group action $G \curvearrowright x$ is called primitive if it does not preserve any non-trivial partition of x, where trivial partitions are $\{X\}$ and $\{\{x\} \mid x \in X\}$.

For instance, let $\sigma:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$, $1 \stackrel{\sigma}{\longmapsto} 2 \stackrel{\sigma}{\longmapsto} 3 \stackrel{\sigma}{\longmapsto} 4 \stackrel{\sigma}{\longmapsto} 1$. Then $\{\{1,3\},\{2,4\}\}$ is

Homework 1
preserved by $\langle\sigma\rangle$; so $\langle\sigma\rangle \curvearrowright\{1,2,3,4\}$ is NOT primitive though it is transitive.

Suppose $G \curvearrowright X$ is a nontrivial transitive Then $G \curvearrowright X$ is primitive if and only if for any $x \in X$ the stabilizer group G_{x} of x is a maximal subgroup; that means (1) G_{x} is a proper subgp
(2) $G_{x} \leq H \leq G \Rightarrow$ either $G_{x}=H$ or $G=H$.
(Hint. Since $G \curvearrowright X$ is transitive, $X=G \cdot x$;
If $\exists G_{x} \not \equiv H \not \equiv G$, then show that $\{g H \cdot x \mid g \in G\}$ is a non-trixial partition of X which is preserved by $G \curvearrowright X$.

- Suppose $\left\{X_{i} \mid r \in I\right\}$ is a partition which is preserved by the G-action. So $\forall g, g \cdot X_{i}=X_{\sigma_{g}(i)}$ where $\sigma_{g} \in S_{I}$.
Suppose $\left|X_{0}\right| \geq 2$; and $x \in X_{0}$
$\forall g \in G_{x}, g \cdot X_{0} \cap X_{0} \neq \varnothing$, which implies $g X_{0}=X_{0}$.
So $G_{X_{0}} \supseteq G_{x}$. Since $\left|X_{0}\right| \geq 2$ and $G \curvearrowright X$ is transitive, $G_{x_{0}} \not G_{x}$. Since $\exists x^{\prime} \in X \backslash X_{0}$ and $G \curvearrowright X$ is trans. $G_{x_{0}} \neq G$.)

