Name: _

Question	Points	Score
1	5	
2	5	
3	10	
4	10	
Total:	30	

1. (5 points) Suppose G is a finite $p\text{-}{\rm group}$ and $1\neq N\trianglelefteq G.$ Prove that $N\cap Z(G)\neq \{1\}.$

2. (5 points) Suppose G is generated by d elements. Prove that

 $|\{H \le G| \; [G:H] \le n\}| \le (n!)^d.$

3. (10 points) Suppose G is a finite group, $H \leq G$, and p is a prime factor of |H|. Prove that $|Syl_p(H)|$ divides $|Syl_p(G)|$, where $Syl_p(G)$ (resp. $Syl_p(H)$) is the set of Sylow p-subgroups of G (resp. H). 4. (10 points) Classify groups of order 306 that have a cyclic 3-subgroup. (Hint: $4 \nmid 306.)$