Name:

Question	Points	Score
1	5	
2	5	
3	10	
4	10	
Total:	30	

1. (5 points) Suppose G is a finite p-group and $1 \neq N \unlhd G$. Prove that

$$
N \cap Z(G) \neq\{1\} .
$$

2. (5 points) Suppose G is generated by d elements. Prove that

$$
|\{H \leq G \mid[G: H] \leq n\}| \leq(n!)^{d} .
$$

3. (10 points) Suppose G is a finite group, $H \unlhd G$, and p is a prime factor of $|H|$. Prove that $\left|\operatorname{Syl}_{p}(H)\right|$ divides $\left|\operatorname{Syl}_{p}(G)\right|$, where $\operatorname{Syl}_{p}(G)$ (resp. $\operatorname{Syl}_{p}(H)$) is the set of Sylow p-subgroups of G (resp. H).
4. (10 points) Classify groups of order 306 that have a cyclic 3-subgroup. (Hint: $4 \nmid 306$.)
