Name: _

Question	Points	Score
1	10	
2	10	
3	10	
4	8	
5	10	
6	12	
Total:	60	

- 1. Let G be a finite simple group. Suppose $|Syl_p(G)| = p + 1$ for a prime p and $P \in Syl_p$. Prove that
 - (a) (3 points) G can be embedded into the symmetric group S_{p+1} .
 - (b) (2 points) Prove $p^2 \nmid |G|$.
 - (c) (2 points) $C_G(P) = P$.
 - (d) (3 points) $|G||p(p^2-1)$.
- 2. (10 points) Let P be a p-subgroup of a finite group G, and

$$f(P) := |\{Q \in \operatorname{Syl}_p(G) | P \subseteq Q\}|.$$

Prove that $f(P) \equiv 1 \pmod{p}$.

- 3. (10 points) Let G be a finite group. Every proper subgroup of G of order divisible by p is a p-group. Prove that any two distinct Sylow p-subgroups intersect trivially. (Hint: Suppose to the contrary that there are two distinct Sylow p-subgroups that intersect non-trivially, and consider the normalizer of a largest such intersection.)
- 4. (a) (5 points) Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain, where $\omega = \frac{1+\sqrt{-3}}{2}$.
 - (b) (3 points) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.
- 5. Let $A = \{a_0 + a_3 x^3 + a_4 x^4 + \dots + a_n x^n | n \in \mathbb{Z}^{\geq 0}, a_i \in \mathbb{Z}\}$ be a subring of $\mathbb{Z}[x]$.
 - (a) (2 points) Find the field fraction of A.
 - (b) (5 points) Is A a UFD?
 - (c) (3 points) Is there $f(x) \in \mathbb{Z}[x]$ such that A is generated as a ring by 1 and f(x), i.e. $A = \mathbb{Z}[f(x)]$?
- 6. Let A be a unital commutative ring. Suppose that for some $n \in \mathbb{Z}^{\geq 0}$ we have

 $x^n = x$

for any $x \in A$.

- (a) (4 points) Prove that, for any prime idea p, A/p is a field of order at most n.
- (b) (4 points) Prove that the intersection of all the maximal ideals of A is zero.
- (c) (4 points) Prove that, if A is Noetherian, then it is finite. (Hint:
 - 1. If $\mathfrak{a} \triangleleft A$, then

$$\operatorname{Ann}(\mathfrak{a}) := \{ a \in A \mid a\mathfrak{a} = 0 \} \triangleleft A,$$

and, if $\mathfrak{a} \subseteq \mathfrak{b}$, then $\operatorname{Ann}(\mathfrak{b}) \subseteq \operatorname{Ann}(\mathfrak{a})$.

2. Consider

 $\Sigma := \{ \operatorname{Ann}(\cap_{i=1}^{n} \mathfrak{p}_i) | \mathfrak{p}_i \in \operatorname{Spec}(A) \},\$

to prove that there are finitely many prime ideals \mathfrak{p}_i 's such that

 $\mathfrak{p}_1\cap\cdots\cap\mathfrak{p}_n=0.$

3. Deduce the A is finite.)