[^0]| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 10 | |
| 2 | 10 | |
| 3 | 10 | |
| 4 | 8 | |
| 5 | 10 | |
| 6 | 12 | |
| Total: | 60 | |

1. Let G be a finite simple group. Suppose $\left|\operatorname{Syl}_{p}(G)\right|=p+1$ for a prime p and $P \in \operatorname{Syl}_{p}$. Prove that
(a) (3 points) G can be embedded into the symmetric group S_{p+1}.
(b) (2 points) Prove $p^{2} \nmid|G|$.
(c) (2 points) $C_{G}(P)=P$.
(d) (3 points) $\mid G \| p\left(p^{2}-1\right)$.
2. (10 points) Let P be a p-subgroup of a finite group G, and

$$
f(P):=\left|\left\{Q \in \operatorname{Syl}_{p}(G) \mid P \subseteq Q\right\}\right|
$$

Prove that $f(P) \equiv 1(\bmod p)$.
3. (10 points) Let G be a finite group. Every proper subgroup of G of order divisible by p is a p-group. Prove that any two distinct Sylow p-subgroups intersect trivially. (Hint: Suppose to the contrary that there are two distinct Sylow p-subgroups that intersect non-trivially, and consider the normalizer of a largest such intersection.)
4. (a) (5 points) Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain, where $\omega=\frac{1+\sqrt{-3}}{2}$.
(b) (3 points) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.
5. Let $A=\left\{a_{0}+a_{3} x^{3}+a_{4} x^{4}+\cdots+a_{n} x^{n} \mid n \in \mathbb{Z} \geq 0, a_{i} \in \mathbb{Z}\right\}$ be a subring of $\mathbb{Z}[x]$.
(a) (2 points) Find the field fraction of A.
(b) (5 points) Is A a UFD?
(c) (3 points) Is there $f(x) \in \mathbb{Z}[x]$ such that A is generated as a ring by 1 and $f(x)$, i.e. $A=\mathbb{Z}[f(x)]$?
6. Let A be a unital commutative ring. Suppose that for some $n \in \mathbb{Z} \geq 0$ we have

$$
x^{n}=x
$$

for any $x \in A$.
(a) (4 points) Prove that, for any prime idea $\mathfrak{p}, A / \mathfrak{p}$ is a field of order at most n.
(b) (4 points) Prove that the intersection of all the maximal ideals of A is zero.
(c) (4 points) Prove that, if A is Noetherian, then it is finite. (Hint:

1. If $\mathfrak{a} \triangleleft A$, then

$$
\operatorname{Ann}(\mathfrak{a}):=\{a \in A \mid a \mathfrak{a}=0\} \triangleleft A
$$ and, if $\mathfrak{a} \subseteq \mathfrak{b}$, then $\operatorname{Ann}(\mathfrak{b}) \subseteq \operatorname{Ann}(\mathfrak{a})$.

2. Consider

$$
\Sigma:=\left\{\operatorname{Ann}\left(\cap_{i=1}^{n} \mathfrak{p}_{i}\right) \mid \mathfrak{p}_{i} \in \operatorname{Spec}(A)\right\}
$$

to prove that there are finitely many prime ideals \mathfrak{p}_{i} 's such that

$$
\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}=0
$$

3. Deduce the A is finite.)

[^0]: Name:

