For every non-empty set X, the identity function I_{X} of X is $I_{X}: X \rightarrow X, I_{X}(x)=x \quad$ for every $x \in X$.

Lemma For every function $f: X \rightarrow Y$, we have

$$
I_{Y} \circ f=f=f \circ I_{X}
$$

Proof. $\quad \underset{\sim}{x \stackrel{~}{\longrightarrow}} Y \xrightarrow{f(x)}$

$$
\begin{aligned}
& f: X \rightarrow Y \quad x \mapsto f(x) \\
& I_{Y} \circ f: X \rightarrow Y \\
& x \mapsto I_{Y}(f(x))=f(x) .
\end{aligned}
$$

So they have the same (co)domain and rules. Hence they are equal functions.

$$
\begin{aligned}
\left(f_{0} I_{x}\right)(x) & =f\left(I_{x}(x)\right) \\
& =f(x) .
\end{aligned}
$$

And so again $f_{0} I_{x}$ and f have the same
(co)domain and rules. Thus $f_{0} I_{x}=f$.
Remark. We say this diagram commutes: it does NOT matter which path we choose.

Lecture 11: Example of composite functions
Thursday, November 3, 2016 1:14 AM
Ex. Complete the missing information, if any.

$$
\begin{aligned}
& f_{1}(x)=x+1, \quad f_{2}(x)=\sqrt{x}, \quad \text { and } \\
& f_{2} \circ f_{1}: \mathbb{R}^{20} \longrightarrow \mathbb{R}, \quad f_{2} f_{1}(x)=\sqrt{x+1}
\end{aligned}
$$

Solution. Domains and co-domains of f_{1} and f_{2} are missing.

since $f_{2} \circ f_{1}$ exists, codomain of f_{1} is the same as domain of f_{2}. Let's denote it by Y.
domain of $f_{1}=$ domain of $f_{2} \circ f_{1}=\mathbb{R}^{20}$.
codomain of $f_{2}=$ codomain of $f_{2} \cdot f_{1}=\mathbb{R}$.
, So $f_{1}: \mathbb{R}^{20} \rightarrow Y, f_{1}(x)=x+1$. In particular,

$$
\forall x \in \mathbb{R}^{20}, \quad f_{1}(x)=x+1 \in Y \text {. So }
$$

$$
x \in \mathbb{R}^{1^{\perp}} \Rightarrow x \in Y \text { and so } \mathbb{R}^{2 \pm} \subseteq Y
$$

- $f_{2}: Y \rightarrow \mathbb{R}, f_{2}(y)=\sqrt{y}$ in order to get a function which is defined at every $y \in Y$, we should assume $y \in Y \Rightarrow y \geq 0 \Rightarrow y \in \mathbb{R}^{\geq 0}$. Thus $Y \subseteq \mathbb{R}^{20}$. Hence Y can be any set $\mathbb{R}^{21} \subseteq Y \subseteq \mathbb{R}^{20}$.

Lecture 11: Image of a function
Thursday, November 3, 2016 8:27 AM
Definition. Let $X \xrightarrow{f} Y$. Image of f is a subset of codomain:

$$
\operatorname{lm}(f)=\{f(x) \mid x \in X\} .
$$

So we have $\quad \forall y \in Y,(y \in \operatorname{lm}(f) \leftrightarrow \exists x \in X, y=f(x))$.
Definition. A function $X \xrightarrow{f} Y$ is called surjective or onto if $\operatorname{lm}(f)=Y$.

So we have
$X \xrightarrow{f} Y$ is surjective $\Longleftrightarrow \forall y \in Y, \exists x \in X, y=f(x)$
In another words, for every $y \in Y$, you can solve the equation $y=f(x)$ for $x \in X$.
Ex. Let $f: \mathbb{R}^{\geq 2} \rightarrow \mathbb{R}, f(x)=x^{3}$. Find $\operatorname{Im}(f)$.
(we will use the facts that $x \mapsto x^{3}$ and $x \mapsto \sqrt[3]{x}$ are increasing functions.)
Solution. We claim $\operatorname{Im}(f)=\mathbb{R}^{\geq 8}$. We need to show $\operatorname{lm}(f) \subseteq \mathbb{R}^{28}$ and $\mathbb{R}^{28} \subseteq \operatorname{lm}(f)$.
$\operatorname{lm}(f) \subseteq \mathbb{R}^{\geq 8}$. To show this we have to verify

Lecture 11: Image of a function
Thursday, November 3, 2016 8:42 AM

$$
\begin{aligned}
& y \in \operatorname{lm}(f) \stackrel{?}{\Rightarrow} y \in \mathbb{R}^{28} \\
& y \in \ln (f) \Rightarrow \exists x \in \mathbb{R}^{2^{2}}, \quad y=f(x)=x^{3} .
\end{aligned}
$$

Since $x \mapsto x^{3}$ is increasing and $x \geq 2$, we have $x^{3} \geq 8$. So $y \geq 8$, which means $y \in \mathbb{R}^{28}$. $\mathbb{R}^{28} \subseteq \operatorname{lm}(f)$. We have to show

$$
y \in \mathbb{R}^{28} \Rightarrow y \in \lim (f)
$$

which means $\forall y \in \mathbb{R}^{28}, \exists x \in \mathbb{R}^{22}, y=x^{3}$.
If $y \geq 8$, then $x=\sqrt[3]{y} \geq \sqrt[3]{8}=2$ and $y=x^{3}$ So for any $y \in \mathbb{R}^{28}, y=(\sqrt[3]{y})^{3}$ and $\sqrt[3]{y} \in \mathbb{R}^{\geq 2}$.

Ex. Suppose A is a non-empty subset of \mathbb{R}. Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{Im}(f)=A$?

Answer. Yes. Since $A \neq \varnothing$, there is $a_{0} \in A$. Let

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x)= \begin{cases}x & \text { if } x \in A \\ a_{0} & \text { if } x \notin A .\end{cases}
$$

Claim. $\operatorname{Im}(f)=A$.
Proof of Claim. As always to show equality of two sets, we have to

Lecture 11: Examples of functions
that one is a subset of the other and vice versa. $y \in \operatorname{Im}(f) \Rightarrow y=f(x)$ for some $x \in \mathbb{R}$.

Case 1. $x \in A$. In this case, $f(x)=x$; and so $y=x \in A$.
Case 2. $x \notin A$. In this case, $f(x)=a_{0}$; and so $y=a_{0} \in A$.
In either case, we obtain that $y \in A$. Hence $\operatorname{Im}(f) \subseteq A$.
Next we show that $A \subseteq \operatorname{Im}(f)$.
$x \in A \Rightarrow f(x)=x$ which implies that $x \in \operatorname{Im}(f)$. Hence $A \subseteq \operatorname{Im}(f)$. Altogether we have $A=\operatorname{Im}(f)$. In calculus, we often use the graph of f in order to visualize properties of f. We can use the same principle for all functions.

Definition. Graph of $X \xrightarrow{f} Y$ is a subset of $X \times Y$:

$$
G_{f}=\{(x, f(x)) \mid x \in X\} .
$$

Lecture 11: Examples on image and graph of functions Friday, November 4, 2016 9:21 AM
Ex. Which one of the following diagrams represent graph of a function? In each case say whether function is surjective or not?
c
b
a

- In graph of a function every "vertical line" intersects the graph in one and exactly one point.

Ex. Suppose $G_{f}=\{(1,1),(2,3),(4,1)\}$ is graph of a surjective function. Find its domain and codomain.

Solution. First components give us the domain of f and the $2^{\text {nd }}$ components give us the image of f. Since f is surjective we have that codomain $=\operatorname{lm}(f)$. So domain $=\{1,2,4\}$ and codomain $=\{1,3\}$.

Lecture 11: Examples of graph; injective functions
Definition A function $f: X \rightarrow Y$ is called infective or one-to-one or 1-1 if

$$
\forall x_{1}, x_{2} \in X,\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)
$$

Definition. A function $f: X \rightarrow Y$ is called bijective if it is both infective and bijective.
. We can use the graph G_{f} of f to see if it is injective, surjective, or bijective.
f is injective \Longleftrightarrow every horizontal line intersects the graph in at most one point.
f is surjective \Longleftrightarrow every horizontal line intersects the graph in at least one point.
$f_{\text {is }}$ objective \Longleftrightarrow every horizontal line intersects the graph in exactly one point.
Ex. In each case determine whether the given function is infective, surjective, or bijective.

Lecture 11: Injective, bijective functions
Sunday, November 6, 2016 4:34 PM
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$.
(b) $f: \mathbb{R}^{>0} \rightarrow \mathbb{R}, f(x)=x^{2}$.
(c). $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=\tan (x)$.

Solution. (a) It is a bijection.
why is it injective? $\quad \forall x_{1}, x_{2} \in \mathbb{R},\left(f\left(x_{1}\right)=f\left(x_{2}\right) \stackrel{?}{\Rightarrow} x_{1}=x_{2}\right)$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}+1=x_{2}+1 \Rightarrow x_{1}=x_{2}
$$

Why is it surjective? We have to show

$$
\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, \quad y=f(x)
$$

So for every $y \in \mathbb{R}$, we have to find $x \in \mathbb{R}$ such that $y=x+1$. We notice $y=x+1 \Leftarrow x=y-1$ and $y-1 \in \mathbb{R}$, which gives us the above claim.
(b) It is injective, but not surjective.

Why is it injective? $\quad \forall x_{1}, x_{2} \in \mathbb{R}^{+},\left(f\left(x_{1}\right)=f\left(x_{2}\right) \stackrel{?}{\Rightarrow} x_{1}=x_{2}\right)$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}^{2}=x_{2}^{2} \Rightarrow \quad\left|x_{1}\right|=\left|x_{2}\right|
$$

$$
\} \Rightarrow x_{1}=x_{2}
$$

Since $x_{1}, x_{2} \in \mathbb{R}^{+}$, we have $x_{1}=\left|x_{1}\right|$ and $x_{2}=\left|x_{2}\right|$] why is it not surjective? For every $x \in \mathbb{R}^{+}, x^{2}>0$. So there is no

Lecture 11: Injective, surjective, bijective
Sunday, November 6, 2016 4:56 PM
$x \in \mathbb{R}^{>0}$ such that $-1=f(x)$, which implies $-1 \notin \operatorname{Im}(f)$.
Therefore $\operatorname{Im}(f) \neq$ the codomain of f which is \mathbb{R}.
[What is $\operatorname{Im}(f) ?$ Claim: $\operatorname{Im}(f)=\mathbb{R}^{+}$.
To show this claim, we need to show $\operatorname{Im}(f) \subseteq \mathbb{R}^{+}$and $\mathbb{R}^{+} \subseteq \operatorname{Im}(f)$.

Why is $\operatorname{Im}(f) \subseteq \mathbb{R}^{+}$? We have to show $y \in \operatorname{Im}(f) \Rightarrow y \in \mathbb{R}^{+}$.

$$
\begin{aligned}
y \in \operatorname{Im}(f) & \Rightarrow \exists x \in \mathbb{R}^{+}, y=f(x) \Rightarrow \exists x>0, y=x^{2} \\
& \Rightarrow y>0 \Rightarrow y \in \mathbb{R}^{+} .
\end{aligned}
$$

why is $\mathbb{R}^{+} \subseteq \operatorname{Im}(f)$? We have to show $y \in \mathbb{R}^{+} \Rightarrow y \in \operatorname{Im}(f)$.
(Backward argument) $y \in \operatorname{Im}(f) \Longleftarrow \exists x \in \mathbb{R}^{+}, y=f(x)$

$$
\left.\Leftarrow \exists x>0, \quad y=x^{2} \Leftarrow\left(\sqrt{y}>0 \quad \text { and }(\sqrt{y})^{2}=y\right) \Leftarrow y>0 .\right]
$$

(c) It is a bijection.

In class, I used graph of $\tan x$ to convey the idea of a proof: As you can see, any horizontal line intersects the graph in one and exactly one point.

Here is a more formal proof using theorems from calculus:
. Function $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=\tan x$ is a differentiable function and

$$
f^{\prime}(x)=\frac{1}{\cos ^{2} x} \geq 1 \quad \text { for any } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

(Using mean value theorem, if $x_{1}<x_{2}$, then

$$
\exists y_{0}, \quad x_{1}<y_{0}<x_{2} \text { and } \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(y_{0}\right) \geq 1
$$

In particular, $\left.f\left(x_{2}\right)-f\left(x_{1}\right) \geq x_{2}-x_{1}\right)$. So if $x_{2}>x_{1}$, then $f\left(x_{2}\right)>f\left(x_{1}\right)$. Therefore f is infective.

We also know $\lim _{x \rightarrow \pi_{2}^{+}} \tan x=+\infty$ and $\lim _{x \rightarrow \pi / 2} \tan x=-\infty$. Since \tan is continuous, by intermediate value theorem we have $\operatorname{lm}(\tan)=\mathbb{R}$.
(Recall. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $f(a)<f(b)$, and $f(a) \leq y_{0} \leq f(b)$, then there exists $a \leq x_{0} \leq b$ such that $f\left(x_{0}\right)=y_{0}$. (This is called intermediate value theorem).
(This page is not important for the purposes of this course.)

Lecture 11: Injection, surjection, composition
Monday, November 7,2016 9:06 AM
Theorem. Suppose $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are two functions.
(a) If got is injective, then f is injective.
(b) If $g \circ f$ is surjective, then g is surjective.
(c) If f and g are injective, then got is injective.
(d) If f and g are surjective, then $g_{0} f$ is surjective.

Proof. (a) We have to show $\forall x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right) \stackrel{?}{\Longrightarrow} x_{1}=x_{2}$.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Longrightarrow g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \\
& \Longrightarrow(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)
\end{aligned}
$$

$\Rightarrow x_{1}=x_{2} \quad$ since oof is infective.
(b) We have to show $\forall z \in Z, \exists y \in Y, g(y)=Z$.

We know got is surjective. So

$$
\begin{aligned}
& \forall z \in \mathbb{Z}, \exists x \in X, \quad(g \cdot f)(x)=z, \text { which implies } \\
& \forall z \in \mathbb{Z}, \exists x \in X, \quad g(f(x))=z .
\end{aligned}
$$

For a given $z \in Z$, let $x \in X$ be such that $g(f(x))=z$ then $y=f(x) \in Y$ and $g(y)=z$ which implies \circledast.

Lecture 11: Injection, surjection, composition
Monday, November 7, 2016 9:21 AM
(c) We have to show $\forall x_{1}, x_{2} \in X,\left(g_{0} f\right)\left(x_{1}\right)=\left(g_{0} \circ f\right)\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

$$
(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right) \Rightarrow g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)
$$

$\Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \quad$ since g is infective
$\Rightarrow x_{1}=x_{2} \quad$ since f is infective.
(d) We have to show $\forall z \in \mathbb{Z}, \exists x \in X,(g \circ f)(x)=z$, which means $g(f(x))=z$ for some $x \in X$.

We go "one step at a time":
Since g is surjective, for some $y \in Y$ we have $g(y)=z$. choose such y and call it y_{0}.

Since f is surjective, for some $x \in X$ we have $f(x)=y_{0}$. Choose such x and call it x_{0}.

So we have $g\left(y_{0}\right)=z$ and $f\left(x_{0}\right)=y_{0}$. Therefore $(g \circ f)\left(x_{0}\right)=g\left(f\left(x_{0}\right)\right)=g\left(y_{0}\right)=z$, as we wished.
Corollary Suppose $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are two functions. If $g \circ f$ is a bijection, then f is injective and g is surjective.

Lecture 11: bijection and composition
Wednesday, August 24, 2022 12:42 PM
Corollary. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions. Then

$$
f, g: \text { bijective } \Rightarrow g_{0} f: \text { bijective. }
$$

Proof.

$$
f, g: \text { bijective } \Rightarrow\left\{\begin{array}{l}
f_{1} g: \text { injective } \Rightarrow g_{0} f: \text { injective } \\
f, g: \text { surjective } \Rightarrow g \circ f: \text { surjective }
\end{array}\right\} \Rightarrow g \circ f: \text { bijective. }
$$

