Math 109: The final exam.
 Instructor: A. Salehi Golsefidy

Name: \qquad
PID:

$$
09 / 03 / 2022
$$

1. Write your Name and PID on the front of your exam sheet.
2. No calculators or other electronic devices are allowed during this exam.
3. Show all of your work; no credit will be given for unsupported answers.
4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.
6. Good luck!

Question	Points	Bonus Points	Score
1	10	0	
2	5	0	
3	10	0	
4	10	0	
5	10	0	
6	10	0	
7	25	0	
8	0	15	
Total:	80	15	

1. (10 points) Which one of the following propositional forms is not equivalent to $P \Rightarrow(Q \vee R)$? Justify your answer.
2. $(P \wedge(\neg Q)) \Rightarrow R$.
3. $(P \wedge(\neg Q) \wedge(\neg R)) \Rightarrow \perp$, where \perp means contradiction.
4. $(P \Rightarrow Q) \vee(P \Rightarrow R)$.
5. $((\neg Q) \wedge(\neg R)) \Rightarrow(\neg P)$.
6. (5 points) Let $a_{0}=0$ and $a_{n+1}:=\sqrt{2+a_{n}}$. Prove that, for every $n \in \mathbb{Z}^{+}$, we have $a_{n}<a_{n+1}$.
7. (10 points) Write the negation of the following proposition (each part has 5 points):
(a) $\forall \varepsilon>0, \exists N \in \mathbb{Z}^{+},\left(\forall n \in \mathbb{Z}^{+},\left(n \geq N \Rightarrow\left|\frac{\sin n}{n}\right|<\varepsilon\right)\right)$.
(b) $\exists x \in(0,1), \forall y \in(0,1), x \leq y$.
8. (10 points) Suppose A and B are two non-empty sets. Prove that there exists an injective function $f: A \rightarrow B$ if and only if there exists a surjective function $g: B \rightarrow A$.
9. (10 points) Suppose X is a non-empty set. Prove that there is no surjective function from X to $P(X)$ where $P(X)$ is the power set of X.
10. (10 points) Prove that, for $a, b, c \in \mathbb{Z}^{+}$, if $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.
11. For each question give a short answer. You are allowed to use all the results proved in the lectures:
(a) (5 points) Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}, f(x, y):=5 x+7 y$. Prove that f is surjective.
(b) (5 points) Prove that, for every integers a, b, we have $7 \mid a b$ implies that either $7 \mid a$ or $7 \mid b$.
(c) (3 points) Let A be a subset of $X, A \neq X$, and

$$
g: P(X) \rightarrow P(X), g(B)=B \cap A
$$

Is g injective?
(d) (4 points) Give an infinite set which is not enumerable.
(e) (3 points) Find $x \in \mathbb{Z}$ such that $5 x \equiv 3(\bmod 56)$.
(f) (5 points) What is the remainder of 20221090903765 divided by 11 ?
8. (Bonus) Suppose p is a positive irreducible. Suppose a is an integer and $p \nmid a$. For every $x \in \mathbb{Z}$, let $r_{p}(x)$ be the remainder of x divided by p. Let

$$
f:\{0, \ldots, p-1\} \rightarrow\{0, \ldots, p-1\}, \quad f(x):=r_{p}(a x)
$$

(a) (5 points (bonus)) Prove that f is a bijection.
(b) (2 points (bonus)) Prove that $\{1, \ldots, p-1\}=\{f(1), \ldots, f(p-1)\}$.
(c) (3 points (bonus)) Prove that $(p-1)!\equiv(p-1)!a^{p-1}(\bmod p)$. (Hint. Notice that $f(x) \equiv a x(\bmod p)$ for every $x)$
(d) $(5$ points $($ bonus $))$ Prove that $a^{p-1} \equiv 1(\bmod p)$.

