Math 109: The final exam. Instructor: A. Salehi Golsefidy

Name:

PID:

09/03/2022

- 1. Write your Name and PID on the front of your exam sheet.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. Show all of your work; no credit will be given for unsupported answers.
- 4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
- 5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.
- 6. Good luck!

Question	Points	Bonus Points	Score
1	10	0	
2	5	0	
3	10	0	
4	10	0	
5	10	0	
6	10	0	
7	25	0	
8	0	15	
Total:	80	15	

- 1. (10 points) Which one of the following propositional forms is not equivalent to $P \Rightarrow (Q \lor R)$? Justify your answer.
 - 1. $(P \land (\neg Q)) \Rightarrow R.$
 - 2. $(P \land (\neg Q) \land (\neg R)) \Rightarrow \bot$, where \bot means contradiction.
 - 3. $(P \Rightarrow Q) \lor (P \Rightarrow R)$.
 - 4. $((\neg Q) \land (\neg R)) \Rightarrow (\neg P).$

2. (5 points) Let $a_0 = 0$ and $a_{n+1} := \sqrt{2 + a_n}$. Prove that, for every $n \in \mathbb{Z}^+$, we have $a_n < a_{n+1}$.

3. (10 points) Write the negation of the following proposition (each part has 5 points):

(a) $\forall \varepsilon > 0, \exists N \in \mathbb{Z}^+, (\forall n \in \mathbb{Z}^+, (n \ge N \Rightarrow |\frac{\sin n}{n}| < \varepsilon)).$

(b) $\exists x \in (0,1), \forall y \in (0,1), x \le y.$

4. (10 points) Suppose A and B are two non-empty sets. Prove that there exists an injective function $f: A \to B$ if and only if there exists a surjective function $g: B \to A$.

5. (10 points) Suppose X is a non-empty set. Prove that there is no surjective function from X to P(X) where P(X) is the power set of X.

6. (10 points) Prove that, for $a, b, c \in \mathbb{Z}^+$, if gcd(a, b) = 1 and a|bc, then a|c.

7. For each question give a short answer. You are allowed to use all the results proved in the lectures:

(a) (5 points) Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) := 5x + 7y$. Prove that f is surjective.

(b) (5 points) Prove that, for every integers a, b, we have 7|ab implies that either 7|a or 7|b.

(c) (3 points) Let A be a subset of $X, A \neq X$, and

$$g: P(X) \to P(X), g(B) = B \cap A.$$

Is g injective?

(d) (4 points) Give an infinite set which is not enumerable.

(e) (3 points) Find $x \in \mathbb{Z}$ such that $5x \equiv 3 \pmod{56}$.

(f) (5 points) What is the remainder of 20221090903765 divided by 11?

8. (Bonus) Suppose p is a positive irreducible. Suppose a is an integer and $p \nmid a$. For every $x \in \mathbb{Z}$, let $r_p(x)$ be the remainder of x divided by p. Let

 $f: \{0, \dots, p-1\} \to \{0, \dots, p-1\}, \quad f(x) := r_p(ax).$

(a) (5 points (bonus)) Prove that f is a bijection.

(b) (2 points (bonus)) Prove that $\{1, \ldots, p-1\} = \{f(1), \ldots, f(p-1)\}.$

(c) (3 points (bonus)) Prove that $(p-1)! \equiv (p-1)!a^{p-1} \pmod{p}$. (Hint. Notice that $f(x) \equiv ax \pmod{p}$ for every x)

(d) (5 points (bonus)) Prove that $a^{p-1} \equiv 1 \pmod{p}$.