HOMEWORK 8 SOLUTIONS

MICHELLE BODNAR

Problem 1

Suppose there exists a surjection $f: A \rightarrow B$. Recall that $|B| \leq|A|$ if and only if there exists an injection from B to A. We'll construct one presently. Define a function $g: B \rightarrow A$ as follows: For each $b \in B$, we know there exists at least one $a \in A$ such that $f(a)=b$. Set $g(b)$ equal to one such a. (You can refresh your memory about this sort of thing by looking back over the Axiom of Choice lecture notes.) Suppose $a=g\left(b_{1}\right)=g\left(b_{2}\right)$ for some $b_{1}, b_{2} \in B$. By definition of g, we must have $f(a)=b_{1}$ and $f(a)=b_{2}$, so $b_{1}=b_{2}$. Therefore g is an injection, so $|B| \leq|A|$.

Now suppose $|B| \leq|A|$. Then there exists an injection $g: B \rightarrow A$. We need to construct a function $f: A \rightarrow B$ which is surjective. Define f as follows: If $x \in \operatorname{Im}(g)$, there exists a unique $y \in Y$ such that $g(y)=x$. In this case set $f(x)=y$. Otherwise, let y_{0} be some fixed element of Y. For each $x \in X \backslash \operatorname{Im}(g)$, set $f(x)=y_{0}$. Then f is clearly a surjection since for each $y \in Y$ we have $f(g(y))=y$.

Problem 2

Define a function $f:(a, b) \rightarrow(0,1)$ as follows:

$$
f(x)=(b-a) x+a .
$$

This function is a bijection since we can write down its inverse: $f^{-1}:(a, b) \rightarrow(0,1), f^{-1}(y)=\frac{y-a}{b-a}$.

Problem 3

(a) Let $f(x)=\arctan (x)$. Then f is a bijection from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$.
(b) By problem 2, $(0,1) \sim\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. By part (a), $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim \mathbb{R}$. Thus, $(0,1) \sim \mathbb{R}$.

Problem 4

Suppose $|A|=|B|$. Then there exists a bijection $f: A \rightarrow B$. Define a function $g: P(A) \rightarrow P(B)$ by $g(X)=\{f(x) \mid x \in X\}$. I claim g is a bijection. To see that this is a bijection, it is enough to write down an inverse. Define $h: P(B) \rightarrow P(A)$ by $h(Y)=\left\{f^{-1}(y) \mid y \in Y\right\}$. This definition makes sense because f is a bijection, so f^{-1} actually exists. For any $X \in P(A)$ we have

$$
h(f(X))=h(\{f(x) \mid x \in X\})=\left\{f^{-1}(f(x)) \mid x \in X\right\}=\{x \mid x \in X\}=X .
$$

Similarly, you can check $f(h(Y))=Y$ for all $Y \in P(B)$. Therefore g is invertible so it is a bijection.

Problem 5

(a) Define $f:\left\{X \subseteq \mathbb{Z}_{\geq 0} \mid X\right.$ is finite $\} \rightarrow \mathbb{Z}^{+}$as in the hint, by

$$
f\left(\left\{m_{1}, \ldots, m_{k}\right\}\right)=2^{m_{1}}+\cdots+2^{m_{k}} .
$$

To see that f is surjective, let $n \in Z^{+}$. Then n has a binary representation $n=2^{i_{1}}+\cdots+2^{i_{j}}$ where $0 \leq i_{1}<\cdots<i_{j}$ and $f\left(\left\{i_{1}, \ldots, i_{j}\right\}\right)=n$. Furthermore, f is injective because the binary representation of a number is unique. In other words, if $2^{m_{1}}+\cdots+2^{m_{k}}=2^{i_{1}}+\cdots+2^{i_{j}}$ then $k=j$ and $m_{\ell}=i_{\ell}$ for each $1 \leq \ell \leq k$. Thus, f is a bijection.
(b) Suppose toward a contradiction that there exists a surjection

$$
g:\left\{X \subseteq \mathbb{Z}_{\geq 0} \mid X \text { is finite }\right\} \rightarrow P\left(\mathbb{Z}_{\geq 0}\right) .
$$

Let f be defined as in part (a). Define a function $h: Z_{\geq 0} \rightarrow\left\{X \subseteq \mathbb{Z}_{\geq 0} \mid X\right.$ is finite $\}$ by $h(n)=f^{-1}(n+1)$. Then h is a bijection since it is a composition of bijections. However, this means that $g \circ h: \mathbb{Z}_{\geq 0} \rightarrow P\left(\mathbb{Z}_{\geq 0}\right)$ is a surjection, a contradiction to Cantor's theorem.

Problem 6

(a) Not injective, since $f(0,0)=f(2,3)$. However, f is surjective. Let $n \in \mathbb{Z}$ be arbitrary. If n is even, $n=2 k$ for some integer k and we have $f(0,-k)=2 k=n$. If n is odd then $n=2 k+1$ for some integer k. Then $f(1,1-k)=3-2(1-k)=2 k+1=n$. Therefore f is surjective.
(b) Observe that

$$
\ell \circ \ell(B)=\ell(A \Delta B)=A \Delta(A \Delta B)=(A \Delta A) \Delta B=\varnothing \Delta B=B .
$$

Thus, $\ell \circ \ell=I_{P(X)}$ so ℓ is both a left and right inverse of iteself. Thus, ℓ is a bijection, so it is both injective and surjective.
(c) If $Y=X$ then $B \cap Y=B \cap X=B$ so that π is just the identity function. In this case, π is certainly a bijection. Now suppose that $Y \neq X$. Then there exists some $x \in X$ such that $x \notin Y$. Then we have $\pi(\varnothing)=\varnothing=\pi(\{x\})$, so π fails to be injective. However, π is surjective because for any $C \in P(Y)$ we have $\pi(C)=C \cap Y=C$.

Problem 7

(a) By a previous homework assignment, we know that $|A|$ is even if and only if $|A \Delta\{1\}|$ is odd. Thus ℓ_{1} and ℓ_{2} are indeed well-defined. In particular, the symmetric difference operator is a well-defined function and the functions map each element of their respective domains to their respective codomains.
(b) Let $A \in X_{O}$. Then we have

$$
\ell_{1} \circ \ell_{2}(A)=\ell_{1}(A \Delta\{1\})=(A \Delta\{1\}) \Delta\{1\}=A \Delta(\{1\} \Delta\{1\})=A \Delta \varnothing=A .
$$

Furthermore, for any $A \in X_{E}$ we have

$$
\ell_{2} \circ \ell_{1}(A)=\ell_{2}(A \Delta\{1\})=(A \Delta\{1\}) \Delta\{1\}=A \Delta(\{1\} \Delta\{1\})=A \Delta \varnothing=A .
$$

We see that ℓ_{1} is both a left and right inverse of ℓ_{2}, so it is the unique inverse of ℓ_{2}.
(c) We know that $X_{E} \cup X_{O}=P(\{1, \ldots, n\})$ and $X_{E} \cap X_{O}=\varnothing$. We also have that $|P(\{1, \ldots, n\})|=2^{n}$. Furthermore, $\left|X_{E}\right|=\left|X_{O}\right|$ since ℓ_{2} is a bijection between them. Thus, by the previous homework,

$$
2^{n}=|P(\{1, \ldots, n\})|=\left|X_{E}\right|+\left|X_{O}\right|-\left|X_{E} \cap X_{O}\right|=2\left|X_{E}\right|-|\varnothing|=2\left|X_{E}\right| .
$$

Therefore $\left|X_{E}\right|=2^{n-1}=\left|X_{O}\right|$.

