HOMEWORK 7 SOLUTIONS

MICHELLE BODNAR

Problem 1

(a) We know that $\mathbb{1}_{A}(x)$ will contribute 1 to the sum each time $x \in A$, and 0 otherwise, so $\sum_{x \in X} \mathbb{1}_{A}(x)=|A|$.
(b) Summing both sides over $x \in X$ and applying part (a) gives

$$
\begin{aligned}
|A \cup B| & =\sum_{x \in X} \mathbb{1}_{A \cup B}(x) \\
& =\sum_{x \in X} \mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A \cap B}(x) \\
& =\sum_{x \in X} \mathbb{1}_{A}(x)+\sum_{x \in X} \mathbb{1}_{B}(x)-\sum_{x \in X} \mathbb{1}_{A \cap B}(x) \\
& =|A|+|B|-|A \cap B|
\end{aligned}
$$

(c) When $n=1$ we have $\mathbb{1}_{A_{1}^{c}}=\left(1-\mathbb{1}_{A_{1}}\right)$ by $3(\mathrm{~b})$ from HW6, since $\mathbb{1}_{X}$ is the constant function 1 . Assume the claim holds for some integer $n \geq 1$. Then we have

$$
\begin{aligned}
\mathbb{1}_{\left(A_{1} \cup \cdots A_{n+1}\right)^{c}} & =\mathbb{1}_{\left(A_{1} \cup \cdots A_{n}\right)^{c} \cap A_{n+1}^{c}} \\
& =\mathbb{1}_{\left(A_{1} \cup \cdots A_{n} c\right.} \mathbb{1}_{A_{n+1}^{c}} \\
& =\left(1-\mathbb{1}_{A_{1}}\right) \cdots\left(1-\mathbb{1}_{A_{n}}\right)\left(1-\mathbb{1}_{A_{n+1}}\right) .
\end{aligned}
$$

By induction, the claim holds for all $n \geq 1$.
(d) Again, we'll proceed by induction. When $n=1$ we have $\mathbb{1}_{A_{1}^{c}}=1-\mathbb{1}_{A_{1}}$ which agrees with the stated formula. Now suppose the claim holds for some integer $n \geq 1$. Then we have

$$
\begin{aligned}
\mathbb{1}_{\left(A_{1} \cup \cdots \cup A_{n+1}\right)^{c}} & =\mathbb{1}_{\left(A_{1} \cup \cdots A_{n}\right)^{c} \cap A_{n+1}^{c}} \\
& =\mathbb{1}_{\left(A_{1} \cup \cdots A_{n}\right)} \mathbb{1}_{A_{n+1}^{c}}^{c} \\
& =\left(1+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} \mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right)\left(1-\mathbb{1}_{A_{n+1}}\right) \\
& =\left(1+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} \mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right)-\mathbb{1}_{A_{n+1}}\left(1+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} \mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right) \\
& =\left(1+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} \mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right)-\left(\mathbb{1}_{A_{n+1}}+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} \mathbb{1}_{A_{i_{1} \cap \cdots \cap A_{i_{k}} \cap A_{n+1}}}\right)
\end{aligned}
$$

Notice how the first double sum gives us terms where the subscripts consist of intersections not involving A_{n+1} and the second double sum gives us terms which do involve A_{n+1}. Furthermore, the minus sign in front of the second double sum ensures that when a subscript involves a $k+1$ term intersection, the sign in front of it is $(-1)^{k+1}$. Thus, we may combine terms to obtiain:

$$
\left(1+\sum_{k=1}^{n+1}(-1)^{k} \sum_{\substack{i_{1}<\cdots<i_{k} \\ 1}} \mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right)
$$

as desired. Summing both sides over $x \in X$ and applying part (a) gives the inclusion-exclusion formula.

Problem 2

(a) By associativity of function composition we have:

$$
g=g \circ I_{y}=g \circ(f \circ h)=(g \circ f) \circ h=I_{X} \circ h=h
$$

so we conclude that $g=h$.
(b) Since f is a bijection it is injective and surjective. According to your class notes, this implies that f has a left inverse g and a right inverse h. By part (a), $g=h$. Thus, g is a candidate for the inverse of f since it is both a left and right inverse. To show uniqueness, suppose g^{\prime} is also a left and right inverse of f. Since g is a left inverse and g^{\prime} is a right inverse, part (a) implies that $g=g^{\prime}$. Therefore the inverse is unique.

Problem 3

(a) Suppose $g \circ f(x)=g \circ f(y)$ for some $x, y \in X$. Since g is injective, this implies $f(x)=f(y)$. Since f is injective, $x=y$. Therefore $g \circ f$ is injective. Now let $c \in Z$ be arbitrary. Since g is surjective, there exists $b \in Y$ such that $g(b)=c$. Since f is surjective, there exists $a \in X$ such that $f(a)=b$. Then we have $g \circ f(a)=g(b)=c$, so $g \circ f$ is surjective. Since $g \circ f$ is injective and surjective, it is a bijection.
(b) Suppose $f^{-1}(x)=f^{-1}(y)$ for some $x, y \in Y$. Applying f to both sides we have $f \circ f^{-1}(x)=$ $f \circ f^{-1}(y)$, which is equivalent to saying $I_{Y}(x)=I_{Y}(y)$. Thus, $x=y$, so f^{-1} is injective. Now let $a \in X$ be arbitrary and set $b=f(a)$. Then $b \in Y$ and we have $f^{-1}(b)=f^{-1}(f(a))=I_{X}(a)=a$, so f^{-1} is surjective. Therefore f^{-1} is bijective.

Problem 4

First suppose g is injective. Let $b \in Y$ be arbitrary. Let $c=g(b)$. Since $g \circ f$ is surjective, there exists $a \in X$ such that $g \circ f(a)=c$. Since $g(f(a))=c=g(b)$ and g is injective, we have $f(a)=b$. Therefore f is surjective.

Now suppose f is surjective. Suppose $g\left(y_{1}\right)=g\left(y_{2}\right)$ for some $y_{1}, y_{2} \in Y$. Since f is surjective, there exist $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Thus, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since $g \circ f$ is injective, this implies $x_{1}=x_{2}$. Applying f to both sides, we have $f\left(x_{1}\right)=f\left(x_{2}\right)$ so $y_{1}=y_{2}$. Therefore g is injective.

Problem 5

(a) If f is bijective then it has a unique inverse by $2(\mathrm{~b})$, which is also a left inverse. 2(a) implies that it is unique, since the inverse is also a right inverse. Now suppose f has a unique left inverse. (Note: the reverse implication is actually only true when $|X|>1$. We'll see why in a minute.) The fact that f has a left inverse implies f is injective, so we need to show f is surjective. Suppose toward a contradiction that f fails to be surjective. Then there exists some $y \in Y$ such that $y \neq f(x)$ for any $x \in X$. Let g be a left inverse of f and define a function $h: Y \rightarrow X$ such that $h(b)=g(b)$ for all $b \in Y$ such that $b \neq y$, and $h(y)$ is any element in x which
is not equal to $g(y)$. Such an element must exist since $|X|>1$. Then h is also a left inverse of f because for all $x \in X$ we have $h(f(x))=g(f(x))=x$. (This relies on the fact that $y \neq f(x)$ for any $x \in X$.) This contradicts uniqueness of g. Therefore f is a bijection.
(b) If f is bijective then it has a unique inverse by $2(\mathrm{~b})$, which is also a right inverse. 2(a) implies that it is unique, since the inverse is also a left inverse. Now suppose f has a unique right inverse. Since f has a right inverse this implies f is surjective, so we just need to show f is injective. Suppose toward a contradiction that f fails to be injective. Then there exist $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1} \neq x_{2}$. Let g be a right inverse of f and define $h: Y \rightarrow X$ such that $h(b)=g(b)$ for all $b \in Y$ such that $b \neq f\left(x_{1}\right)$. Define $h\left(f\left(x_{1}\right)\right)$ to be x_{1} if $g\left(f\left(x_{1}\right)\right) \neq x_{1}$, and $h\left(f\left(x_{1}\right)\right)=x_{2}$ if $g\left(f\left(x_{1}\right)\right) \neq x_{2}$. Then for all $y \neq f\left(x_{1}\right)$ we have $f(h(y))=f(g(y))$. We also have $f\left(h\left(f\left(x_{1}\right)\right)=f\left(x_{1}\right)=f\left(g\left(f\left(x_{1}\right)\right)\right.\right.$, so h is in fact a right inverse of f. Finally, $h\left(f\left(x_{1}\right)\right) \neq g\left(f\left(x_{1}\right)\right)$, so h and g are not the same function. This contradicts uniqueness of g. Therefore f must be injective, so we conclude f is a bijection.

