HOMEWORK 6 SOLUTIONS

MICHELLE BODNAR

Problem 1

$$
\begin{aligned}
(x, y) \in A \times(B \cup C) & \Longleftrightarrow x \in A \wedge y \in B \cup C \\
& \Longleftrightarrow x \in A \wedge(y \in B \vee y \in C) \\
& \Longleftrightarrow(x \in A \wedge y \in B) \vee(x \in A \wedge y \in C) \\
& \Longleftrightarrow(x, y) \in A \times B \vee(x, y) \in A \times C \\
& \Longleftrightarrow(x, y) \in A \times B \cup A \times C .
\end{aligned}
$$

Therefore the two sets are equal.

Problem 2

(a) This statement is true. Suppose toward a contradiction that there exists some $x \in \mathbb{R}$ such that for all $\varepsilon>0$ we have $|x|<\varepsilon$ and $x \neq 0$. Setting $\varepsilon=|x| / 2$ implies that $|x|<|x| / 2$, which is impossible. Thus, the statement is true.
(b) This statement is false. To see this, set $x=1$ and $\varepsilon=2$. Then $|x|<\varepsilon$ but it is not the case that $x=0$.

Problem 3

(a) To show the functions are the same, it suffices to check that they give the same output for any input. Let $x \in X$. If $x \in A \cap B$ then $\mathbb{1}_{A \cap B}=1$. On the other hand, $x \in A$ and $x \in B$, so we have $\mathbb{1}_{A}(x) \cdot \mathbb{1}_{B}(x)=1 \cdot 1=1$.

If $x \notin A \cap B$ then $\mathbb{1}_{A \cap B}(x)=0$. On the other hand, if $x \notin A \cap B$ then either $x \notin A$ or $x \notin B$ so at least one of the functions $\mathbb{1}_{A}(x)$ and $\mathbb{1}_{B}(x)$ evaluates to 0 , making $\mathbb{1}_{A}(x) \cdot \mathbb{1}_{B}(x)=0$.
(b) Let $x \in X$. If $x \in A$ then

$$
\mathbb{1}_{A}(x)+\mathbb{1}_{A^{c}}(x)=1+0=1=\mathbb{1}_{X}(x) .
$$

If $x \notin A$ then

$$
\mathbb{1}_{A}(x)+\mathbb{1}_{A^{c}}(x)=0+1=1=\mathbb{1}_{X}(x) .
$$

(c) Let $x \in X$. We'll first consider the case where $x \in A \cup B$, so that $\mathbb{1}_{A \cup B}(x)=1$. If $x \in A \cap B$ then by part (a) we have

$$
\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A}(x) \mathbb{1}_{B}(x)=\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A \cap B}(x)=1+1-1=1 .
$$

If $x \notin A \cap B$ then x is in exactly one of A or B, so we have

$$
\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A}(x) \mathbb{1}_{B}(x)=\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A \cap B}(x)=1+0-0=1 .
$$

Now we'll consider the case where $x \notin A \cup B$. Then $\mathbb{1}_{A \cup B}(x)=0$ and we have

$$
\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A}(x) \mathbb{1}_{B}(x)=\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A \cap B}(x)=0+0-0=0 .
$$

Therefore the functions are the same.
(d)

$$
\begin{aligned}
\mathbb{1}_{A \backslash B} & =\mathbb{1}_{A} \cdot \mathbb{1}_{B^{c}} & & \text { by (a) } \\
& =\mathbb{1}_{A}\left(\mathbb{1}_{X}-\mathbb{1}_{B}\right) & & \text { by (b) } \\
& =\mathbb{1}_{A} \cdot \mathbb{1}_{X}-\mathbb{1}_{A} \cdot \mathbb{1}_{B} & & \\
& =\mathbb{1}_{A \cap X}-\mathbb{1}_{A \cap B} & & \text { by (a) } \\
& =\mathbb{1}_{A}-\mathbb{1}_{A \cap B} & &
\end{aligned}
$$

(e)

$$
\begin{array}{rlr}
\mathbb{1}_{A \Delta B} & =\mathbb{1}_{A \cup B \backslash A \cap B} & \\
& =\mathbb{1}_{A \cup B}-\mathbb{1}_{A \cup B} \cdot \mathbb{1}_{A \cap B} & \text { by (d) } \\
& =\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A \cap B}-\mathbb{1}_{(A \cup B) \cap(A \cap B)} & \text { by (c) and (a) } \\
& =\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A \cap B}-\mathbb{1}_{A \cap B} & \text { since } A \cap B \subset A \cup B \\
& =\mathbb{1}_{A}+\mathbb{1}_{B}-2 \mathbb{1}_{A} \cdot \mathbb{1}_{B} &
\end{array}
$$

(f) Let $A, B \subset X$. To prove the forward direction of the implication, suppose that $\forall x \in X$ we have that $\mathbb{1}_{A}(x) \leq \mathbb{1}_{B}(x)$. Now let $a \in A$. Then we have $\mathbb{1}_{A}(a)=1 \leq \mathbb{1}_{B}(a)$. Since $\mathbb{1}_{B}$ can only take values in $\{0,1\}$ this implies $\mathbb{1}_{B}(a)=1$. In other words, that $x \in B$. Thus, $A \subset B$.

For the reverse direction of the implication, suppose $A \subset B$. Then for any $x \in A$ we have $\mathbb{1}_{A}(x)=1$. Since $A \subset B$ we also have $x \in B$, so $\mathbb{1}_{B}(x)=1$. In particular, $\mathbb{1}_{A}(x) \leq \mathbb{1}_{B}(x)$. If $x \notin A$ then $0=\mathbb{1}_{A}(x) \leq \mathbb{1}_{B}(x)$ since any characterstic function is at least 0.

If $A=B$ then clearly $\mathbb{1}_{A}=\mathbb{1} B$. On the other hand, if $\mathbb{1}_{A}=\mathbb{1}_{B}$ then $\mathbb{1}_{A} \leq \mathbb{1}_{B}$ and $\mathbb{1}_{B} \leq \mathbb{1}_{A}$. This implies $A \subset B$ and $B \subset A$, so $A=B$.

Problem 4

Suppose $\Theta(A)=\Theta(B)$ for some $A, B \in P(X)$. Then $\mathbb{1}_{A}=\mathbb{1}_{B}$. By problem 3f, this implies $A=B$. Therefore Θ is injective. Next, let $f \in F(X,\{0,1\})$ be arbitrary. We'll define a set A as follows:

$$
A=\{a \in X \mid f(a)=1\} .
$$

Then we have $\Theta(A)=\mathbb{1}_{A}$. Furthermore, for any $x \in X$ we have

$$
\mathbb{1}_{A}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array}=\left\{\begin{array}{ll}
1 & f(x)=1 \\
0 & f(x)=0
\end{array}=f(x) .\right.\right.
$$

Therefore Θ is surjective. Since Θ is injective and surjective, it is a bijection.

