
HOMEWORK 5 SOLUTIONS

MICHELLE BODNAR

Problem 1

(a)
∃ε > 0,∀δ > 0, ∣x − 1∣ < δ ∧ ∣x2 − 1∣ ≥ ε

(b)
∃ε > 0,∃x ∈ R,∀n ∈ Z, ∣x − n∣ ≥ ε

(c) Let α be an irrational number.

∃ε > 0,∃x ∈ R,∀m,n ∈ Z, ∣x −m − nα∣ ≥ ε

Problem 2

(a) This statement is true. Let x = −2017. Then for any real number y we have y2 ≥ 0 > −1 = 2016+x.

(b) This statement is false. Suppose towards a contradiction that there were such an x. Then we

can set y = 3
√

2016 + x, so we have y3 = 2016 + x, which contradicts the fact that y3 > 2016 + x.

(c) This statement is true. Let ε > 0 be arbitrary. By the hint, we know there exists an integer
which is strictly greater than 1000/ε. Let N be such an integer. Then for any n ≥ N we have

1000

n
≤

1000

N
< ε.

Problem 3

Suppose toward a contradiction that there exist L1, L2 ∈ R such that for all ε > 0 we have ∣L1−L2∣ < ε

but L1 ≠ L2. Let ε =
∣L1−L2∣

2 . (Note: since L1 ≠ L2, we know that ε is in fact strictly greater than

0, so this is a valid choice of ε.) Then we have ∣L1 −L2∣ <
∣L1−L2∣

2 which is impossible. �

Problem 4

(a)
∀ε > 0,∃N ∈ Z>0,∀n ∈ Z, n ≥ N Ô⇒ ∣xn − a∣ < ε.

(b) Suppose toward a contradiction that the limit does exist. In other words, there exists L ∈ R
such that limx→a f(x) = L. Before doing any actual work, let’s think how you might approach
a problem like this. Since we assumed the limit exists, we know that when the inputs to f are
close to a, the outputs are close to L. We know that the x+n terms get close to a, and when we
input them to f we get outputs close to L1. This should tell you that L1 must be close to L.
On the other hand, the x−n terms get close to a as well, and when we input them to f we get
outputs close to L2. This means that L2 must be close to L. In particular, both L1 and L2 can
be made as close to L as we like, but L1 ≠ L2, so at some point this must fail. That “failure”
is exactly what will get us our contradiction. To make all this precise, we need to go back to
definitions.
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Let’s get started by writing down all the inequalities we get for free from our hypotheses. I’ll
number them so we may refer to them easily later. Let ε > 0. By the definition of limit, there
exists some δ > 0 such that ∣x − a∣ < δ implies

(1) ∣f(x) −L∣ <
ε

4
.

Since x+n → a, there exists N1 such that n ≥ N1 implies

(2) ∣x+n − a∣ < δ.

(Note: Here, δ is playing the role of ε from our definition in part (a)).

Since x−n → a, there exists N2 such that n ≥ N2 implies

(3) ∣x−n − a∣ < δ.

Since f(x+n)→ L1, there exists N3 such that n ≥ N3 implies

(4) ∣f(x+n) −L1∣ <
ε

4
.

Since f(x−n)→ L2, there exists N4 such that n ≥ N4 implies

(5) ∣f(x−n) −L2∣ <
ε

4
.

Let N = max(N1,N2,N3,N4). Then for n ≥ N , inequalities (1), (2), (3), and (4) will all
simultaneously hold. In particular, for any n ≥ N we have:

∣L1 −L2∣ = ∣L1 −L +L −L2∣

≤ ∣L1 −L∣ + ∣L −L2∣ by the triangle inquality (∣x + y∣ ≤ ∣x∣ + ∣y∣ for any x, y ∈ R)

= ∣L1 − f(x
+
n) + f(x

+
n) −L∣ + ∣L − f(x

−
n) + f(x

−
n) −L2∣

≤ ∣L1 − f(x
+
n)∣ + ∣f(x

+
n) −L∣ + ∣L − f(x

−
n)∣ + ∣f(x

−
n) −L2∣ by triangle inequality

We can now bound each of these terms with ease: By (4), ∣L1−f(x
+
n)∣ < ε/4. By (5), ∣f(x−n)−L2∣ <

ε/4. By (1) and (2), we know ∣x+n − a∣ < δ and ∣x−n − a∣ < δ. Thus, by (1) we have that
∣f(x+n) −L∣ < ε/4 and ∣L − f(x−n)∣ < ε/4. Putting this all together, we have

∣L1 −L2∣ <
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Since this argument works for any ε > 0, problem 3 tells us that L1 = L2, which contradicts
our assumption that they were distinct. �


