
HOMEWORK 3 SOLUTIONS

MICHELLE BODNAR

Problem 1

(a) Let x and y be positive real number. Then we have

x < y Ô⇒ 1

y
≤ 1

x

Ô⇒ 1 + 1

y
≤ 1 + 1

x

Ô⇒ 1

1 + 1
x

≤ 1

1 + 1
y

Ô⇒ f(x) ≤ f(y)
so we conclude that the function is increasing.

(b) We’ll proceed by induction. For the base case we have a0 = 1 = 1
2 + 1

2 ≤ 1
2 +

√
5
2 = 1+

√
5

2 . Now

suppose that ak ≤ 1+
√
5

2 for some integer k ≥ 0. Since f is increasing, we have

ak+1 = f(ak) ≤ f (1 +√5

2
) =

2 (1+
√
5

2 ) + 1

(1+
√
5

2 ) + 1
= 2

2 +√5

3 +√5

3 −√5

3 −√5
= 1 +√5

2
.

By induction, an ≤ 1+
√
5

2 for all n ≥ 0.

(c) We’ll proceed by induction. For the base case, a0 = 1 and a1 = 3/2 so we have a0 ≤ a1. Now
suppose that ak ≤ ak+1 for some integer k ≥ 0. Since f is increasing, we have

f(ak) ≤ f(ak+1)
which implies that

ak+1 ≤ ak+2.

By induction, we conclude that an ≤ an+1 for all n ≥ 0.

(d) Since {an} is increasing an bounded from above it must converge to a limit L. Then we have

L = lim
n→∞

an+1 = lim
n→∞

f(an) = 2L + 1

L + 1
.

Solving, we see that L = 1+
√
5

2 or L = 1−
√
5

2 . We know to choose the first option since a0 = 1

and an is an increasing sequence, so L must be positive. Thus, L = 1+
√
5

2 . �
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Problem 2

We’ll proceed by induction. For the base case when n = 1 we have 12 = 1 and
1(1+1)(2+1)

6 = 1. Now

suppose that 12 +⋯ + k2 = k(k+1)(2k+1)
6 for some integer k ≥ 0. Then we have

12 +⋯ + k2 + (k + 1)2 = k(k + 1)(2k + 1)
6

+ (k + 1)2

= (k + 1)(k(2k + 1) + 6(k + 1))
6

= (k + 1)(2k2 + 7k + 6)
6

= (k + 1)((k + 2)(2k + 3)
6

= (k + 1)((k + 1) + 1)(2(k + 1) + 1)
6

By induction, we conclude that the claim holds for all n ≥ 1. �

Problem 3

We’ll proceed by induction. When n = 1 we have b1 = 1 and F2

F1
= 1/1 = 1. Now suppose bn = Fk+1

Fk

for some integer k ≥ 1. Then we have

bk+1 = 1 + 1

bk

= 1 + Fk

Fk+1

= Fk+1 + Fk

Fk+1

= Fk+2

Fk+1

as desired. By induction, the claim holds for all n ≥ 1. �

Problem 4

The hint shows how to write n as a positive integer linear combination of 5 and 9 for 34 ≤ n ≤ 38.
In other words, we can make 34 through 38 cent postage using 5 and 9 cent stamps. The proof
will proceed by strong induction. Suppose that for some integer k ≥ 38 we can create all postage
amounts 34 ≤ j ≤ k. We now need to show that we can make k + 1 cent postage. By assumption,
k + 1 − 5 = k − 4 ≥ 38 − 4 = 34. By the induction hypothesis, we can make k − 4 cent postage using 5
and 9 cent stamps. Adding a single 5 cent stamp to this yields the desired k + 1 cent postage. By
strong induction, we conclude that all postage amounts greater equal 34 are possible using 5 and 9
cent stamps. �

Problem 5

We’ll proceed by induction. When n = 1, we have 41 + 5 = 9 = 3 ⋅ 3, which is divisible by 3. Now
suppose that 3∣4k + 5 for some integer k ≥ 1. Then we can write 4k + 5 = 3m for some integer m,
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and we have

4k+1 + 5 = 4(4k + 5 − 5) + 5

= 4(3m − 5) + 5

= 3(4m) − 20 + 5

= 3(4m) − 15

= 3(4m − 5).
Therefore 3∣4k+1 + 5. By induction, we conclude 3∣4n + 5 for all positive integers n. �

Problem 6

We’ll proceed by induction. It is clear that any 2 × 2 square grid with one square removed can be
covered by a single L-shaped tile. Now suppose that any 2k×2k square grid with one square removed
can be covered by L-shaped tiles for some integer k ≥ 1. Suppose we’re given a 2k+1 × 2k+1 square
grid G with a single square removed. Break this into 4 2k × 2k square grids G1,G2,G3, and G4 by
cutting G vertically down the middle and horizontally across the middle. By assumption, exactly
one of these has one square removed. Without loss of generality, we may assume it is G1. By the
induction hypothesis, we can cover G1 with L-shaped pieces. Using a single L-shaped piece, cover
the 3 center squares which come from G2, G3, and G4. By the induction hypothesis, we can now tile
the remainder of G2, G3 and G4 with L-shaped pieces, thereby coving all of G. By induction, we
conclude that any 2n×2n square grid with one square removed can be covered by L-shaped tiles. �

Problem 7

We’ll proceed by strong induction. By assumption, x1 + 1
x1 is an integer, so the claim holds in the

base case when n = 1. Now suppose that for some integer k ≥ 1 we have xm + 1
xm is an integer for

all 1 ≤m ≤ k. Observe that

(xk + 1

xk
)(x + 1

x
) = xk+1 + 1

xk+1
+ xk−1 + 1

xk−1
.

By the induction hypothesis, xk + 1
xk = r1 for some integer r1, x + 1

x = r2 for some integer r2, and

xk−1 + 1
xk−1 = r3 for some integer r3. Thus, xk+1 + 1

xk+1 = r1r2 − r3 which is an integer. By induction

we conclude that xn + 1
xn for all positive integers n. �


