HOMEWORK 3 SOLUTIONS

MICHELLE BODNAR

Problem 1

(a) Let x and y be positive real number. Then we have

$$
\begin{aligned}
x<y & \Longrightarrow \frac{1}{y} \leq \frac{1}{x} \\
& \Longrightarrow 1+\frac{1}{y} \leq 1+\frac{1}{x} \\
& \Longrightarrow \frac{1}{1+\frac{1}{x}} \leq \frac{1}{1+\frac{1}{y}} \\
& \Longrightarrow f(x) \leq f(y)
\end{aligned}
$$

so we conclude that the function is increasing.
(b) We'll proceed by induction. For the base case we have $a_{0}=1=\frac{1}{2}+\frac{1}{2} \leq \frac{1}{2}+\frac{\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}$. Now suppose that $a_{k} \leq \frac{1+\sqrt{5}}{2}$ for some integer $k \geq 0$. Since f is increasing, we have

$$
a_{k+1}=f\left(a_{k}\right) \leq f\left(\frac{1+\sqrt{5}}{2}\right)=\frac{2\left(\frac{1+\sqrt{5}}{2}\right)+1}{\left(\frac{1+\sqrt{5}}{2}\right)+1}=2 \frac{2+\sqrt{5}}{3+\sqrt{5}} \frac{3-\sqrt{5}}{3-\sqrt{5}}=\frac{1+\sqrt{5}}{2} .
$$

By induction, $a_{n} \leq \frac{1+\sqrt{5}}{2}$ for all $n \geq 0$.
(c) We'll proceed by induction. For the base case, $a_{0}=1$ and $a_{1}=3 / 2$ so we have $a_{0} \leq a_{1}$. Now suppose that $a_{k} \leq a_{k+1}$ for some integer $k \geq 0$. Since f is increasing, we have

$$
f\left(a_{k}\right) \leq f\left(a_{k+1}\right)
$$

which implies that

$$
a_{k+1} \leq a_{k+2} .
$$

By induction, we conclude that $a_{n} \leq a_{n+1}$ for all $n \geq 0$.
(d) Since $\left\{a_{n}\right\}$ is increasing an bounded from above it must converge to a limit L. Then we have

$$
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\frac{2 L+1}{L+1} .
$$

Solving, we see that $L=\frac{1+\sqrt{5}}{2}$ or $L=\frac{1-\sqrt{5}}{2}$. We know to choose the first option since $a_{0}=1$ and a_{n} is an increasing sequence, so L must be positive. Thus, $L=\frac{1+\sqrt{5}}{2}$.

Problem 2

We'll proceed by induction. For the base case when $n=1$ we have $1^{2}=1$ and $\frac{1(1+1)(2+1)}{6}=1$. Now suppose that $1^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$ for some integer $k \geq 0$. Then we have

$$
\begin{aligned}
1^{2}+\cdots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{(k+1)(k(2 k+1)+6(k+1))}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)((k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

By induction, we conclude that the claim holds for all $n \geq 1$.

Problem 3

We'll proceed by induction. When $n=1$ we have $b_{1}=1$ and $\frac{F_{2}}{F_{1}}=1 / 1=1$. Now suppose $b_{n}=\frac{F_{k+1}}{F_{k}}$ for some integer $k \geq 1$. Then we have

$$
\begin{aligned}
b_{k+1} & =1+\frac{1}{b_{k}} \\
& =1+\frac{F_{k}}{F_{k+1}} \\
& =\frac{F_{k+1}+F_{k}}{F_{k+1}} \\
& =\frac{F_{k+2}}{F_{k+1}}
\end{aligned}
$$

as desired. By induction, the claim holds for all $n \geq 1$.

Problem 4

The hint shows how to write n as a positive integer linear combination of 5 and 9 for $34 \leq n \leq 38$. In other words, we can make 34 through 38 cent postage using 5 and 9 cent stamps. The proof will proceed by strong induction. Suppose that for some integer $k \geq 38$ we can create all postage amounts $34 \leq j \leq k$. We now need to show that we can make $k+1$ cent postage. By assumption, $k+1-5=k-4 \geq 38-4=34$. By the induction hypothesis, we can make $k-4$ cent postage using 5 and 9 cent stamps. Adding a single 5 cent stamp to this yields the desired $k+1$ cent postage. By strong induction, we conclude that all postage amounts greater equal 34 are possible using 5 and 9 cent stamps.

Problem 5

We'll proceed by induction. When $n=1$, we have $4^{1}+5=9=3 \cdot 3$, which is divisible by 3 . Now suppose that $3 \mid 4^{k}+5$ for some integer $k \geq 1$. Then we can write $4^{k}+5=3 m$ for some integer m,
and we have

$$
\begin{aligned}
4^{k+1}+5 & =4\left(4^{k}+5-5\right)+5 \\
& =4(3 m-5)+5 \\
& =3(4 m)-20+5 \\
& =3(4 m)-15 \\
& =3(4 m-5) .
\end{aligned}
$$

Therefore $3 \mid 4^{k+1}+5$. By induction, we conclude $3 \mid 4^{n}+5$ for all positive integers n.

Problem 6

We'll proceed by induction. It is clear that any 2×2 square grid with one square removed can be covered by a single L-shaped tile. Now suppose that any $2^{k} \times 2^{k}$ square grid with one square removed can be covered by L-shaped tiles for some integer $k \geq 1$. Suppose we're given a $2^{k+1} \times 2^{k+1}$ square grid G with a single square removed. Break this into $42^{k} \times 2^{k}$ square grids G_{1}, G_{2}, G_{3}, and G_{4} by cutting G vertically down the middle and horizontally across the middle. By assumption, exactly one of these has one square removed. Without loss of generality, we may assume it is G_{1}. By the induction hypothesis, we can cover G_{1} with L-shaped pieces. Using a single L-shaped piece, cover the 3 center squares which come from G_{2}, G_{3}, and G_{4}. By the induction hypothesis, we can now tile the remainder of G_{2}, G_{3} and G_{4} with L-shaped pieces, thereby coving all of G. By induction, we conclude that any $2^{n} \times 2^{n}$ square grid with one square removed can be covered by L-shaped tiles.

Problem 7

We'll proceed by strong induction. By assumption, $x^{1}+\frac{1}{x^{1}}$ is an integer, so the claim holds in the base case when $n=1$. Now suppose that for some integer $k \geq 1$ we have $x^{m}+\frac{1}{x^{m}}$ is an integer for all $1 \leq m \leq k$. Observe that

$$
\left(x^{k}+\frac{1}{x^{k}}\right)\left(x+\frac{1}{x}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}} .
$$

By the induction hypothesis, $x^{k}+\frac{1}{x^{k}}=r_{1}$ for some integer $r_{1}, x+\frac{1}{x}=r_{2}$ for some integer r_{2}, and $x^{k-1}+\frac{1}{x^{k-1}}=r_{3}$ for some integer r_{3}. Thus, $x^{k+1}+\frac{1}{x^{k+1}}=r_{1} r_{2}-r_{3}$ which is an integer. By induction we conclude that $x^{n}+\frac{1}{x^{n}}$ for all positive integers n.

