HOMEWORK 2 SOLUTIONS

MICHELLE BODNAR

Problem 1

We'll break the proof into two cases.

Case 1: n is even. Then $n=2 k$ for some integer k and we have $n(n+1)=2(k(n+1))$ so $n(n+1)$ is even.

Case 2: n is odd. Then $n+1$ is even so $n+1=2 \ell$ for some integer ℓ and we have $n(n+1)=2(n \ell)$ so $n(n+1)$ is even.

Problem 2

Let $p>1$ be a prime such that $p=a b$ for some integer a and b. Since $p \cdot 1=a b$, we have that $p \mid(a b)$, so p divides a or p divides b.

Case 1: $p \mid a$. Then $|p| \leq|a|$. On the other hand, $p=a b$ so $a \mid p$ which implies that $|a| \leq|p|$. Thus $|p|=|a|$ so we conclude that $p= \pm a$.

Case 2: $p \mid b$. Then $|p| \leq|b|$. On the other hand, $p=a b$ so $b \mid p$ which implies that $|b| \leq|p|$. Thus $|p|=|b|$ so we conclude that $p= \pm b$.

In either case, $p= \pm a \vee p= \pm b$.

Problem 3

Since $d \mid a$ we can write $a=d k$ for some integer k. Since $a \mid b$ we can write $b=a \ell$ for some integer ℓ. Then we have $b=a \ell=d(k \ell)$, so $d \mid b$.

Problem 4

Since $d \mid m$ we can write $m=d k$ for some integer k. Multiplying both sides by r gives $r m=d(k r)$ so $d \mid r m$. Since $d \mid n$ we can write $n=d \ell$ for some integer ℓ. Multiplying both sides by s gives $s n=d(\ell s)$ so $d \mid s n$. By Problem 3, divides their sum $r m+s n$.

Problem 5

False. Let $a=2$ and $b=3$.

Problem 6

Let $n>1$ be an integer and d be a divisor of n such that $1<d<n$. Then we can write $n=d k$ for some integer k. If $d \leq \sqrt{n}$ then we're done since we can simply let $d^{\prime}=d$. Otherwise, $d>\sqrt{n}$.

I claim that $k \leq \sqrt{n}$. To see this, suppose toward a contradiction that $k>\sqrt{n}$. Then we have $n=d k>\sqrt{n} \sqrt{n}=n$, which is impossible. No number can be strictly larger than itself. Thus, $k \leq \sqrt{n}$. Further, since $d<n$ we must have $n=d k<n k$, which implies that $k>1$. We can now take $d^{\prime}=k$.

Problem 7

$$
\begin{aligned}
0 \leq(x-y)^{2} & \Longrightarrow 0 \leq x^{2}-2 x y-y^{2} \\
& \Longrightarrow 2 x y \leq x^{2}+y^{2} \\
& \Longrightarrow 4 x y \leq x^{2}+2 x y+y^{2} \\
& \Longrightarrow 4 x y \leq(x+y)^{2} \\
& \Longrightarrow \frac{4 x^{2} y^{2}}{(x+y)^{2}} \leq x y \\
& \Longrightarrow \frac{2 x y}{x+y} \leq \sqrt{x y} \\
& \Longrightarrow \frac{2 x y}{x+y} \frac{1 /(x y)}{1 /(x y)} \leq \sqrt{x y} \\
& \Longrightarrow \frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \sqrt{x y}
\end{aligned}
$$

Keep in mind that this string of implications depends on the fact that x and y are positive real numbers. This is what justifies preserving the direction of inequality when we multiply both sides by $x y$, for instance.

