HOMEWORK 1 SOLUTIONS

MICHELLE BODNAR

Note: I will freely use the logical equivalences proved in the lecture notes.

Problem 1

For this problem you should set up a truth table for each statement. Two statements are logically equivalent if and only if their columns are identical in a truth table.

Problem 2

$$
\begin{aligned}
(P \vee Q) \Longrightarrow R & \equiv \neg(P \vee Q) \vee R \\
& \equiv(\neg P \wedge \neg Q) \vee R \\
& \equiv(\neg P \vee R) \wedge(\neg Q \vee R) \\
& \equiv(P \Longrightarrow R) \wedge(Q \Longrightarrow R)
\end{aligned}
$$

Alternately, we can break the proof into cases:
Case 1: $P \vee Q$ is true. Then the left hand side is true if and only if R is true. For the right hand side, if R is true then both implications are true, so the entire statement is. If R is false then either $P \Longrightarrow R$ or $Q \Longrightarrow R$ is false since at least one of P and Q is true. Thus, the entire right hand side is false.

Case 2: $P \vee Q$ is false. Then the left hand side is always true. Further, both P and Q are false which means that the statements $P \Longrightarrow R$ and $Q \Longrightarrow R$ must both be true, ensuring that the right hand side is always true as well.

Problem 3

Suppose P is true and Q is false. Then $P \Longrightarrow Q$ is false but $Q \Longrightarrow P$ is true. Thus, the statements cannot be logically equivalent.

Problem 4

(a) Recall the definition of absolute value:

$$
|a|=\left\{\begin{array}{ll}
a & \text { if } a \geq 0 \\
-a & \text { if } a<0
\end{array}\right. \text {. }
$$

If $a \geq 0$ then $|a|=a$, so $|a| \geq a$. If $a<0$ then multiplying both sides by -1 gives $0<-a=|a|$.
(b) If $b \geq 0$ then $|b|=b$ so $|b|^{2}=b^{2}$. If $b<0$ then $|b|=-b$ so $|b|^{2}=(-b)(-b)=(-1)^{2} b^{2}=b^{2}$.
(c) If $c+d \geq 0$ then:

$$
\begin{aligned}
|c+d| & =c+d \\
& \leq|c|+d \text { by part (a) } \\
& \leq|c|+|d| \text { by part }(\mathrm{a}) .
\end{aligned}
$$

If $c+d<0$ then:

$$
\begin{aligned}
|c+d| & =-(c+d) \\
& =-c+-d \\
& \leq|-c|+-d \\
& \leq|-c|+|-d| \\
& =|c|+|d| .
\end{aligned}
$$

Problem 5

$$
\begin{aligned}
P \Longrightarrow(Q \vee R) & \equiv \neg P \vee(Q \vee R) \\
& \equiv(\neg P \vee Q) \vee R \\
& \equiv \neg(\neg P \vee Q) \Longrightarrow R \\
& \equiv(P \wedge(\neg Q)) \Longrightarrow R \text { this proves the first equivalence } \\
& \equiv((P \wedge(\neg Q)) \wedge \neg R) \Longrightarrow \perp \\
& \equiv(P \wedge(\neg Q) \wedge \neg R) \Longrightarrow \perp
\end{aligned}
$$

Problem 6

Since $d \mid m_{1}-m_{2}$ and $d \mid n_{1}-n_{2}$, there exist integers k and ℓ such that $d k=m_{1}-m_{2}$ and $d \ell=n_{1}-n_{2}$. Then we have:

$$
\begin{aligned}
\left(m_{1}+n_{1}\right)-\left(m_{2}+n_{2}\right) & =m_{1}-m_{2}+n_{1}-n_{2} \\
& =d k+d \ell \\
& =d(k+\ell)
\end{aligned}
$$

so we conclude $d \mid\left(\left(m_{1}+n_{1}\right)-\left(m_{2}+n_{2}\right)\right)$. Furthermore, we have $d k n_{1}=\left(m_{1}-m_{2}\right) n_{1}$ and $d \ell m_{2}=$ $\left(n_{1}-n_{2}\right) m_{2}$. Adding these two equations together yields

$$
m_{1} n_{1}-m_{2} n_{2}=d k n_{1}+d \ell m_{2}=d\left(k n_{1}+\ell m_{2}\right) .
$$

Therefore $d \mid\left(m_{1} n_{1}-m_{2} n_{2}\right)$.

