HOMEWORK 1 SOLUTIONS

MICHELLE BODNAR

Note: I will freely use the logical equivalences proved in the lecture notes.

Problem 1

For this problem you should set up a truth table for each statement. Two statements are logically equivalent if and only if their columns are identical in a truth table.

Problem 2

$$(P \lor Q) \implies R \equiv \neg (P \lor Q) \lor R$$
$$\equiv (\neg P \land \neg Q) \lor R$$
$$\equiv (\neg P \lor R) \land (\neg Q \lor R)$$
$$\equiv (P \implies R) \land (Q \implies R)$$

Alternately, we can break the proof into cases:

Case 1: $P \lor Q$ is true. Then the left hand side is true if and only if R is true. For the right hand side, if R is true then both implications are true, so the entire statement is. If R is false then either $P \implies R$ or $Q \implies R$ is false since at least one of P and Q is true. Thus, the entire right hand side is false.

Case 2: $P \lor Q$ is false. Then the left hand side is always true. Further, both P and Q are false which means that the statements $P \implies R$ and $Q \implies R$ must both be true, ensuring that the right hand side is always true as well.

Problem 3

Suppose P is true and Q is false. Then $P \implies Q$ is false but $Q \implies P$ is true. Thus, the statements cannot be logically equivalent.

Problem 4

(a) Recall the definition of absolute value:

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}.$$

If $a \ge 0$ then |a| = a, so $|a| \ge a$. If a < 0 then multiplying both sides by -1 gives 0 < -a = |a|. (b) If $b \ge 0$ then |b| = b so $|b|^2 = b^2$. If b < 0 then |b| = -b so $|b|^2 = (-b)(-b) = (-1)^2 b^2 = b^2$. (c) If $c + d \ge 0$ then:

$$\begin{aligned} |c+d| &= c+d \\ &\leq |c|+d \text{ by part (a)} \\ &\leq |c|+|d| \text{ by part (a).} \end{aligned}$$

If c + d < 0 then:

$$c + d| = -(c + d)$$

= -c + -d
 $\leq |-c| + -d$
 $\leq |-c| + |-d|$
= $|c| + |d|.$

Problem 5

$$P \implies (Q \lor R) \equiv \neg P \lor (Q \lor R)$$
$$\equiv (\neg P \lor Q) \lor R$$
$$\equiv \neg (\neg P \lor Q) \implies R$$
$$\equiv (P \land (\neg Q)) \implies R \text{ this proves the first equivalence}$$
$$\equiv ((P \land (\neg Q)) \land \neg R) \implies \bot$$
$$\equiv (P \land (\neg Q) \land \neg R) \implies \bot$$

Problem 6

Since $d|m_1 - m_2$ and $d|n_1 - n_2$, there exist integers k and ℓ such that $dk = m_1 - m_2$ and $d\ell = n_1 - n_2$. Then we have:

$$(m_1 + n_1) - (m_2 + n_2) = m_1 - m_2 + n_1 - n_2$$

= $dk + d\ell$
= $d(k + \ell)$

so we conclude $d|((m_1 + n_1) - (m_2 + n_2))$. Furthermore, we have $dkn_1 = (m_1 - m_2)n_1$ and $d\ell m_2 = (n_1 - n_2)m_2$. Adding these two equations together yields

$$m_1n_1 - m_2n_2 = dkn_1 + d\ell m_2 = d(kn_1 + \ell m_2).$$

Therefore $d|(m_1n_1 - m_2n_2)$.