Lecture 28: Prime and irreducible

Let's recall the definitions of prime and irreducible integers:
Definition. (1) $n \in \mathbb{Z}^{1}$ is called irreducible if
$\forall a, b \in \mathbb{Z}, \quad n=a b \Rightarrow(n=|a|$ or $n=|b|)$.
(2) $p \in \mathbb{Z}^{\lambda^{1}}$ is called prime if
$\forall a, b \in \mathbb{Z}, \quad p \mid a b \Rightarrow(p \mid a$ or $p \mid b)$.

- Recall that $n \in \mathbb{Z}^{>1}$ is irreducible if and only if the only positive divisors of n are 1 and n.
Theorem. $\forall n \in \mathbb{Z}^{1}, n$ is irreducible $\Longleftrightarrow n$ is prime.
- An alternative way to formulate the above theorem is

Suppose $n \in \mathbb{Z}^{1}$. n has only two positive divisors if and only if the following holds $n|a b \Rightarrow n| a$ or $n \mid b$.

- (\Rightarrow) side of the above statement is called Euclid's lemma.

Proof of Theorem. (\Rightarrow) We assume n is irreducible, and we have to prove $n \mid a b \Rightarrow(n|a \vee n| b)$. It is enough to prove $(n \mid a b \wedge n \nmid a) \Rightarrow n \mid b$.

Lecture 28: Prime and irreducible
Thursday, December 1,2016 10:28 PM

$$
\left.\left.\begin{array}{rl}
\operatorname{gcd}(a, n) \mid a \\
n \nmid a
\end{array}\right\} \Rightarrow \begin{array}{rl}
& \operatorname{gcd}(a, n) \neq n \\
& \operatorname{gcd}(a, n) \mid n \\
& \text { the only positive } \\
& \text { divisors of } n \\
& \text { are } 1 \text { and } n
\end{array}\right\} \Rightarrow \operatorname{gcd}(a, n)=1
$$

$\left.\begin{array}{c}n \mid a b \\ \operatorname{gcd}(n, a)=1\end{array}\right\} \Rightarrow n \mid b \quad$ by Corollary 2.
$\Leftrightarrow n=a b$. Since $n \neq 0, a \neq 0$ and $b \neq 0 ;$ and $n \mid a b$.
Since n is prime, $n \mid a$ or $n \mid b$.
Case 1. n / a.
In this case, as $a \neq 0$, we have $n \leq|a|$. So $|a||b| \leq|a|$.
Thus $|b| \leq 1$. Hence $|b|=1$, which implies $n=|a|$.
Case 2. $n \mid b$.
By a similar argument, as in case 1, we get $n=|a|$.

This theorem is the key result in proving any integer >1 can be written as a product of primes in a unique way. You will see this either in your algebra series or in your number theory series. We say \mathbb{Z} is a unique factorization domain (UFD).

Lecture 28: Equations in congruence arithmetic
Wed like to solve congruence equations:
(Q) Find all the solutions of $a x \equiv b(\bmod n)$. Does it have a solution?

Ex. For $n=2$ and $b=1$; there are two cases: $a \stackrel{2}{\equiv} 0$ or $a^{2} \equiv 1$.

If $a \stackrel{2}{\equiv} 0$, then, for any $x \in \mathbb{Z}, a x_{\equiv}^{2} 0 \not \equiv 1$. So $a x \xlongequal[\equiv]{\equiv} 1$ has no solution.

If $a \stackrel{2}{\equiv} 1$, then any odd x is a solution of $x \equiv 1$.
Ex. For $n=3$ and $b=1$; there are three cases:

$$
a \stackrel{3}{\equiv} 0,1 \text {,or } 2 .
$$

- As above $a \stackrel{3}{=} 0$ has no solution, and any integer of the form $3 k+1$ is a solution of $x \stackrel{3}{\equiv} 1$.
- How about $a \stackrel{3}{=} 2$? In rational numbers we write:

$$
2 x=1 \Rightarrow\left(\frac{1}{2}\right) 2 x=\frac{1}{2} \Rightarrow x=\frac{1}{2}
$$

But here we are looking for integers x such that $2 x^{3} \equiv 1$.

Lecture 28: Equations in congruence arithmetic

As in the rational case we look for an "inverse" of $2 \bmod 3$. Modulo 3 any number is congruent to 0,1 , or 2 . So we can look for an inverse among these numbers:

\cdot	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Table of multiplication $\bmod 3$.

So 2 is an inverse of $2 \bmod 3$. Hence

$$
\begin{aligned}
2 x \equiv \frac{3}{\equiv} 1 & \Longrightarrow(2)(2 x) \stackrel{3}{\equiv}(2)(1) \\
& \Rightarrow \quad x \equiv \frac{3}{\equiv} 2 .
\end{aligned}
$$

So x is a solution if and only if x is of the form $3 k+2$. Ex. For $n=4, b=1$; there are four cases: $a^{4}=0,1,2,3$. As before we can handle the cases of $a \underline{=} 0$ and 1 .

Does $2 x \stackrel{4}{=} 1$ have a solution? (Since $2 x-1$ is odd, $4 \nmid 2 x-1$; and so it does NOT have a solution.)

Next we will prove two lemmas that give alternative arguments

Lecture 28: Congruence and gad
Friday, December 2, 2016 12:17 AM
for this case.
Lemma. For any $n \in \mathbb{Z}^{+}, a \stackrel{n}{\equiv} b \Rightarrow \operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.
Proof. Let $d_{1}=\operatorname{gcd}(a, n)$ and $d_{2}=\operatorname{gcd}(b, n)$. To show $d_{1}=d_{2}$, it is enough to show $d_{1} \mid d_{2}$ and $d_{2} \mid d_{1}$
(notice that $d_{i} \geq 1$.).
By symmetry it is enough to show $d_{1} \mid d_{2}$.

$$
\left.\begin{array}{l}
a \stackrel{n}{\equiv} b \Rightarrow \exists k \in \mathbb{Z}, b=n k+a \\
d_{1} \mid n \\
d_{1} \mid a
\end{array}\right\} \Rightarrow d_{1} \mid n k+a \text {. So } d_{1} \mid b \text { and } d_{1}\left|n . ~ \$ d_{1}\right| d_{2} .
$$

In the next lecture, we will use this lemma to prove
Euclid's algorithm for finding ged of two integers.
Lemma. If $a x \equiv b(\bmod n)$ has a solution, then $\operatorname{gcd}(a, n) \mid b$.
(we have already proved this lemma, when we discussed

Lecture 28: Linear equations in congruence arithmetic
linear Diophantine equations.)
Proof of lemma. For some integer x, we have $a x \underline{\underline{n}} b$.
So, by the previous lemma, $\operatorname{gcd}(a x, n)=\operatorname{gcd}(b, n)$.
Let $\left.\begin{array}{rl}d=\operatorname{gcd}(a, n) \text {. Then } & d \mid a\} \Rightarrow\{\mid a x \\ d \mid \ln \end{array}\right\} \Rightarrow d \mid \operatorname{gcd}(a x, n)$.
Hence $d \operatorname{lgcd}(b, n)$. On the other hand $\operatorname{gcd}(b, n) \mid b$.
Therefore $d \mid b$, which means $\operatorname{gcd}(a, n) \mid b$.
In the next lecture we will prove the convers.

