Lecture 27: Pigeonhole and divisibility

Recall. For any $n \in \mathbb{Z}^{+}, a \in \mathbb{Z}$, there is a unique $r \in\{0,1, \cdots, n-1\}$ such $a \equiv r(\bmod n)$.

Problem. For any $k_{1}, \ldots, k_{n+1} \in \mathbb{Z}$, there are $i \neq j$ such that

$$
n \mid k_{i}-k_{j} .
$$

Solution. For any i, let r_{i} be the remainder of k_{i} divided by n. So (1) $k_{i} \xlongequal{n} r_{i}$,
(2) $r_{i} \in\{0,1, \cdots, n-1\}$.

Since $r_{1}, r_{2}, \cdots, r_{n+1} \in\{0,1, \cdots, n-1\}$, by the pigeonhole
n possible numbers
principle there are $i \neq j$ such that $r_{i}=r_{j}$.
Hence $k_{i} \equiv \underline{\equiv} r_{i}=r_{j} \equiv \underline{\equiv} k_{j}$, which implies $k_{i} \equiv \underline{\equiv} k_{j}$. So $n \mid k_{i}-k_{j}$.
Corollary. For any $k_{1}, k_{2}, k_{3} \in \mathbb{Z}$, we have

$$
2 \mid\left(k_{1}-k_{2}\right)\left(k_{2}-k_{3}\right)\left(k_{3}-k_{1}\right) .
$$

Proof. Using the previous problem for $n=3$ we get that $\exists i \neq j, \quad 2 \mid k_{i}-k_{j}$. Hence $2 \mid\left(k_{1}-k_{2}\right)\left(k_{2}-k_{3}\right)\left(k_{3}-k_{1}\right)$.

Definition. Let a and b be two integers such that at least one of them is non-zero. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$. So, if $d=\operatorname{gcd}(a, b)$, then - $d \mid a$ and $d \mid b$ (d is a common divisor of a and b)
$\left.\begin{array}{ll}-d^{\prime} \mid a \\ d^{\prime} \mid b\end{array}\right\}=d^{\prime} \leq d \quad$ (Any common divisor of a and b is
Recall. If $a \mid b$ and $b \neq 0$, then $|a| \leq|b|$.
Lemma. For any non-zero integers a and b we have

$$
1 \leq \operatorname{gcd}(a, b) \leq \min \{|a|,|b|\}
$$

Proof. $1 \mid a$ and $1 \mid b \Rightarrow 1 \leq \operatorname{god}(a, b)$.
. Let $d=\operatorname{gcd}(a, b)$. So $1 \leq d$, and hence $|d|=d$.

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{l}
d \mid a \\
a \neq 0
\end{array}\right\} \Rightarrow|d| \leq|a| \\
d \mid b \\
b \neq 0
\end{array}\right\} \Rightarrow|d| \leq|b|\right\} \quad d=|d| \leq \min \{|a|,|b|\}
$$

Lecture 27: god and integer linear combination Monday, November 28, 2016 6:33 PM

The following is one of the most important results that could be proved in this class:

Theorem. Let a and b be positive integers. Then there are integers r and s such that $\operatorname{gcd}(a, b)=r a+s b$.
Proof. In the proof we use the well-ordering principle:
If S is a non-empty subset of \mathbb{Z}^{+}, then S has a minimum.
Let $S=\left\{n \in \mathbb{Z}^{+} \mid \exists x, y \in \mathbb{Z}, n=a x+b y\right\}$. Notice that $a=a(1)+b(0)>0$, so $a \in S$ and $S \neq \varnothing$. Hence by the well-ordering principle, S has the minimum. Let $d^{\prime}=\min S$, and $d=\operatorname{gcd}(a, b) \cdot$. It is enough to prove $d=d^{\prime}$.

Step 1. $d \leq d^{\prime}$.
Proof of step 1. Since $d^{\prime} \in S$, there are $r, s \in \mathbb{Z}$ such that $d^{\prime}=r a+s b$. On the other hand, $d=\operatorname{gcd}(a, b)$ is a common divisor of a and b. So $\left.\begin{array}{l|l|l} & d \mid b \\ d \mid b\end{array}\right\} \Rightarrow d \mid r a+s b=d^{\prime}$ $\left(d \mid d^{\prime}\right.$ and $\left.d^{\prime}, d>0\right) \Rightarrow d \leq d^{\prime}$.

Lecture 27: ged and integer linear combination

Step 2. $d^{\prime} \leq d$.
Proof of step 2. To show this, it is enough to show d^{\prime} is a common divisor of a and b since d is the greatest common divisor of a and b.
By symmetry it is enough to show $d^{\prime} \mid a$. (By symmetry here means that by a similar argument one can get $d^{\prime} \mid b$.) Proof of $d^{\prime} l a$. Suppose to the contrary that $d^{\prime} x a$.
Let r be the remainder of a divided by d^{\prime}. So for some $q \in \mathbb{Z}, a=d^{\prime} q+r$ and $0 \leq r<d^{\prime}$. Since d'ła (by the contrary assumption), $r \neq 0$. Hence

$$
0<r<d^{\prime} \text { and } \quad \begin{aligned}
r & =a-d^{\prime} q=a-(r a+s b) q \\
& =(1-r q) a-(s q) b
\end{aligned}
$$

Therefore r is an integer linear combination of a and b, and r is positive. So $r \in S$. Thus $r \geq \min S=d^{\prime}$ which contradicts $r<d^{\prime}$.

Lecture 27: Some properties of gad
Thursday, December 1,2016 9:52 PM
Corollary 1. For any $a, b \in \mathbb{Z}^{+}$,

$$
\left.\begin{array}{l|l}
d \mid a \\
d \mid b
\end{array}\right\} \Rightarrow d \mid \operatorname{gcd}(a, b)
$$

Proof. By the previous theorem, there are integers r and s such that $\operatorname{gcd}(a, b)=r a+s b$.

$$
\left.\begin{array}{l}
d \mid a \\
d \mid b
\end{array}\right\} \Rightarrow d|r a+s b \Rightarrow d| \operatorname{gcd}(a, b)
$$

Corollary 2. For any $a, b, c \in \mathbb{Z}^{+}$,

$$
\left.\begin{array}{c}
a \mid b c \\
\operatorname{gcd}(a, b)=1
\end{array}\right\} \Rightarrow a \mid c .
$$

Proof.
By the previous theorem, there are integers r and s such that $r a+s b=1$. Therefore $r a c+s b c=c$. $\left.\begin{array}{l}a \mid a \\ a \mid b c\end{array}\right\} \Rightarrow a \mid(r c) a+(s) b c=c$.

