Lecture 27: Pigeonhole and divisibility

Monday, November 28, 2016

Recall. For any $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}$, there is a unique $r \in \{0,1,...,n-1\}$

such $a \equiv r \pmod{n}$.

Problem. For any $k_1, ..., k_{n+1} \in \mathbb{Z}$, there are $i \neq j$ such that

 $n \mid k_i - k_i$

Solution. For any i, let ribe the remainder of ki divided

by n. So \mathbb{I} $k_i \stackrel{\text{N}}{=} r_i$,

2 r_i ∈ {0,1,...,n-1}.

Since $r_1, r_2, \dots, r_{n+1} \in \{0, 1, \dots, n-1\}$, by the pigeonhole

principle there are $i \neq j$ such that $r_i = r_j$.

Hence $k_i = r_i = r_i = k_i$, which implies $k_i = k_i$. So

n ki-kj.

Corollary. For any k1, k2, k3 ∈ Z, we have

 $2/(k_1-k_2)(k_2-k_3)(k_3-k_1)$

Proof. Using the previous problem for n=3 we get that

 $\exists i \neq j$, $2 \mid k_1 - k_2$. Hence $2 \mid (k_1 - k_2)(k_2 - k_3)(k_3 - k_4)$.

Lecture 27: gcd of two integers

Monday, November 28, 2016

6:19 PM

Definition. Let a and b be two integers such that at least one of them is non-zero. The greatest common divisor of a and b is denoted by gcd(a,b). So, if d = gcd(a,b), then d | a and d | b (d is a common divisor of a and b) d'| a $f \Rightarrow d \leq d$ (Any common divisor of a and b is d' | b | at most d.)

Recall. If a | b and b $\neq 0$, then $|a| \leq |b|$.

Lemma. For any non-zero integers a and b we have $1 \leq \gcd(a,b) \leq \min \{|a|, |b|\}$

Proof. 1 | a and 1 | b \Rightarrow 1 \leq god (a, b).

. Let $d = \gcd(a,b)$. So $1 \le d$, and hence |d| = d. $d|a \le \Rightarrow |d| \le |a| \le \Rightarrow d = |d| \le \min \le |a|, |b| \le a \ne o$ $d|b \le \Rightarrow |d| \le |b|$

Lecture 27: gcd and integer linear combination

Monday, November 28, 2016 6:33 PM

The following is one of the most important results that would be proved in this class:

Theorem. Let a and b be positive integers. Then there are integers r and s such that gcd(a,b) = ra + sb.

Proof. In the proof we use the well-ordering principle:

If S is a non-empty subset of Zt, then S has a minimum.

Let $S = \{n \in \mathbb{Z}^{+} \mid \exists x, y \in \mathbb{Z}, n = ax + by \}$. Notice that a = a(1) + b(0) > 0, so $a \in S$ and $S \neq \emptyset$. Hence by the

well-ordering principle, S has the minimum. Let d'=min S,

and d = gcd(a,b). It is enough to prove d = d'.

Step 1. d≤d'.

Proof of step 1. Since $d' \in S$, there are $r, s \in \mathbb{Z}$ such that d' = ra + sb. On the other hand, $d = \gcd(a,b)$ is a common divisor of a and b. So $d \mid a \not \Rightarrow d \mid ra + sb = d'$ $d \mid b \mid$ $d \mid d' \mid and d', d \mid a \mid b \mid$

Lecture 27: gcd and integer linear combination

Thursday, December 1, 2016 9:40

Step 2. d'≤d.

Proof of step 2. To show this, it is enough to show d' is a common divisor of a and b since d is the greatest common divisor of a and b.

By symmetry it is enough to show $d' \mid a$. (By symmetry here means that by a similar argument one can get $d' \mid b$.)

Proof of $d' \mid a$. Suppose to the contrary that $d' \mid a$.

Let r be the remainder of a divided by d'. So

for some $q \in \mathbb{Z}$, a = d'q + r and $o \leq r < d'$. Since $d' \mid a$ (by the contrary assumption), $r \neq o$. Hence o < r < d' and r = a - d'q = a - (ra + sb)q = (1 - rq)a - (sq)b.

Therefore r is an integer linear combination of a and b, and r is positive. So $r \in S$. Thus $r \ge \min S = d'$ which contradicts $r \nmid d'$.

Lecture 27: Some properties of gcd

Thursday, December 1, 2016

Corollary 1. For any a, be Zt,

 $d \mid a \mid \Rightarrow d \mid \gcd(a, b)$.

Proof. By the previous theorem, there are integers r and

s such that gcd(a,b) = ra + sb.

 $d \mid a \mid \Rightarrow d \mid ra + sb \Rightarrow d \mid gcd(a,b)$.

Corollary 2. For any a,b,c∈Z+,

 $a \mid bc \end{cases} \Rightarrow a \mid c.$ gcd(a,b)=1

Proof.

By the previous theorem, there are integers r and s such that ra+sb=1. Therefore rac+sbc=c.

$$a \mid a \quad \} \Rightarrow a \mid (rc) a + (s) bc = c.$$

$$a \mid bc \quad \}$$