Lecture 26: Congruence arithmetic

Wednesday, November 23, 2016 5:09 PN

Recall: Division algorithm For any $a,b \in \mathbb{Z}$, $b \neq 0$, there is a

unique pair (q,r) of integers such that

(1)
$$a = bq + r$$
 (2) $0 \le r < |b|$.

q is called the quotient of a divided by b, and

r is called the remainder of a divided by b.

Definition. For $n \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$, we say a is congruent

to b modulo n and write $a = b \pmod{n}$ or a = b

if n | a-b, i.e. a-b is an integer multiple of n.

Ex.
$$5 = 1$$
 as $2 | 4 = 5 - 1$.

$$80 \equiv -1$$
 as $3 \mid 81 = 80 - (-1)$.

$$a = a$$
 as $n \mid o = a - a$.

Let's recall some of the basic properties of divisibility before we continue our study of congruence arithmetics.

Recall Yd, a, b = Z, we have

Lecture 26: Congruence arithmetic

Wednesday, November 23, 2016 5:24 PM

(3)
$$d | a_1 - a_2 | \Rightarrow \beta d | (a_1 + b_1) - (a_2 + b_2)$$

 $d | b_1 - b_2 | d | a_1 b_1 - a_2 b_2$.

Let me just quickly recall how we showed the last assertion:

$$a_1 b_1 - a_2 b_2 = a_1 b_1 - a_2 b_1 + a_2 b_1 - a_2 b_2 = (a_1 - a_2) b_1 + a_2 (b_1 - b_2) \oplus$$

Since $d \mid a_1 - a_2$ and $d \mid b_1 - b_2$, there are integers k_1 and k_2 such that $a_1 - a_2 = d k_1$ and $b_1 - b_2 = d k_2$. So by a are get $a_1b_1 - a_2b_2 = (d k_1)b_1 + a_2(d k_2) = d (\underbrace{k_1b_1 + a_2k_2}_{\text{is an integer}})$. Hence $d \mid a_1b_1 - a_2b_2$.

Lemma. For any $n \in \mathbb{Z}^+$, $a,b,c \in \mathbb{Z}$, we have

$$(1) \quad a \stackrel{n}{=} b \implies b \stackrel{n}{=} a.$$

(2)
$$a = b$$
 $\Rightarrow a = c$.
 $b = c$

Proof. (1) $\alpha \stackrel{n}{=} b \Rightarrow n \mid a-b \Rightarrow n \mid (-1)(a-b) = b-a$ $\Rightarrow b \stackrel{n}{=} a$.

(2)
$$a = b \Rightarrow n | a-b \Rightarrow n | (a-b)+(b-c)$$

$$b = c \Rightarrow n | b-c \Rightarrow n | a-c \Rightarrow a = c . \blacksquare$$

(For all practical reasons it behaves like an equality.)

Lecture 26: Congruence arithmetic

Wednesday, November 23, 2016

Corollary. For $n \in \mathbb{Z}^+$, $a_1, a_2, b_1, b_2 \in \mathbb{Z}$, we have

$$a_{1} \stackrel{n}{=} a_{2} \Rightarrow \begin{cases} a_{1} + b_{1} \stackrel{n}{=} a_{2} + b_{2} \\ a_{1} b_{1} \stackrel{n}{=} a_{2} b_{2} \end{cases}$$

Proof.
$$a_1 \stackrel{n}{=} a_2 \Rightarrow n \mid a_1 - a_2 \} \Rightarrow n \mid (a_1 + b_1) - (a_2 + b_2) \} \Rightarrow b_1 \stackrel{n}{=} b_2 \Rightarrow n \mid b_1 - b_2 \} \quad n \mid a_1 b_1 - a_2 b_2$$

$$\begin{cases} a_1 + b_1 \stackrel{\text{th}}{=} a_2 + b_2 \\ a_1 b_1 \stackrel{\text{th}}{=} a_2 b_2 \end{cases}$$

Corollary. For any $m,n\in\mathbb{Z}^+$, $a,b\in\mathbb{Z}$, we have

$$a \stackrel{n}{=} b \Rightarrow a^m \stackrel{n}{=} b^m$$

Proof. We prove this by induction on m.

Base of induction. m=1. This case is clear as

$$a^{1}=a$$
, $b^{1}=b$, and $a=b$.

Induction step. For a given integer k, we have to show

$$a = b \stackrel{?}{\Rightarrow} a \stackrel{k+1}{=} b$$

 $a = b \xrightarrow{k} a = b \xrightarrow{k+1} n \xrightarrow{k+1} b$ $a = b \xrightarrow{k} \Rightarrow a^{k} \cdot a = b \cdot b \quad \text{(by the above lemma)}$ $a = b \xrightarrow{k} \Rightarrow a^{k+1} = b^{k+1} \pmod{n}.$

Lecture 26: Division algorithm; congruence arithmetic

Wednesday, November 23, 2016

Theorem. For any $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$, there is a unique $r \in \mathbb{Z}$ such that (1) $a \equiv r \pmod{n}$

$$(2)$$
 $0 \leq r < n$

Proof. Existence. By Division algorithm there are integers

q and r such that 0 a = nq + r,

So a-r=nq, which implies $n \mid a-r$. Hence $a \stackrel{n}{=} r$.

Thus $a \equiv r$ and $0 \leq r < n$.

Uniqueness Using Division algorithm, it is enough to prove a = r \Rightarrow r is the remainder of o < r < n \Rightarrow a divided by n.

 $a = r \Rightarrow n \mid a - r \Rightarrow \exists q \in \mathbb{Z}, nq = a - r$

 \Rightarrow a = nq + r \Rightarrow r is the remainder of and one have $0 \le r < n$ a divided by n.

Lecture 26: Remainder of division by 9

Wednesday, November 23, 2016

Ex. What is the remainder of 10^n divided by 9 (for $n \in \mathbb{Z}^+$)?

Solution. 10 = 1 \Rightarrow for any $n \in \mathbb{Z}^+$, $10^n = 1^n = 1$

(by a corollary proved inductively on n.)

 \Rightarrow the remainder of 10^n divided by 9 is 1.

Ex. What is the remainder of 109109140 100 103 divided by 9?

Solution. 109109140 100 103 =

 $3 + 10 \times 0 + 10^{2} \times 1 + 10^{3} \times 0 + 10^{4} \times 0 + 10^{5} \times 1 + 10^{6} \times 0 + 10^{7} \times 4 + 10^{8} \times 1 + 10^$

 $10^{8} \times 1 + 10^{9} \times 9 + 10^{10} \times 0 + 10^{11} \times 1 + 10^{12} \times 9 + 10^{13} \times 0 + 10^{14} \times 1$

 $\begin{array}{c}
9 \\
\hline
 3+0+1+0+0+1+0+4+1+9+0+1+9+0+1
\end{array}$

 $10^n \equiv 1 \pmod{9} \Rightarrow \text{ powers of 10 can be replaced with 1}$

which means we are adding the digits of this number

= 12 = 3. So the remainder of this division is 3.

```
Lecture 26: Remainder of a division by 11
      Wednesday, November 23, 2016
     Ex. What is the remainder of 10^n divided by 11 (for n \in \mathbb{Z}^+)?
   Solution. 10 = -1 \Rightarrow for any n \in \mathbb{Z}^+, 10^n \stackrel{!}{=} (-1)^n (by a corollary proved inductively on n.)
        So, if n is even, remainder is 1 (warning: Remainder is always
      And, if n is odd, remainder is 10.
                                                                                                                                                                                                                    non-negative · )
     Ex. What is the remainder of 109109140 100 103 divided by 11?
     Solution. 109109140 100 103 =
3 + 10 \times 0 + 10^{2} \times 1 + 10^{3} \times 0 + 10^{4} \times 0 + 10^{5} \times 1 + 10^{6} \times 0 + 10^{7} \times 4 + 10^{8} \times 1 + 10^
                    10^{8} \times 1 + 10^{9} \times 9 + 10^{10} \times 0 + 10^{11} \times 1 + 10^{12} \times 9 + 10^{13} \times 0 + 10^{14} \times 1
  3-0+1-0+0-1+0-4+1-9+0-1+9-0+1
     10 = (1) (mod 10) => powers of to should be replaced with
                                                                                                  1 or -1
       -> we should alternate between adding and subtracting digits.
```

 $\stackrel{11}{=}$ 0. So this number is divisible by 11 and the remainder is 0.