Recall: Division algorithm For any $a, b \in \mathbb{Z}, b \neq 0$, there is a unique pair (q, r) of integers such that
(1) $a=b q+r$
(2) $0 \leq r<|b|$.
q is called the quotient of a divided by b, and r is called the remainder of a divided by b.
Definition. For $n \in \mathbb{Z}^{+}, a, b \in \mathbb{Z}$, we say a is congruent to b modulo n and write $a \equiv b(\bmod n)$ or $a \xlongequal{n} b$ if $n \mid a-b$, i.e. $a-b$ is an integer multiple of n.
Ex. $\quad 5 \xlongequal{\cong} 1$ as $2 / 4=5-1$.

$$
\begin{aligned}
& 80 \stackrel{3}{\equiv}-1 \quad \text { as } 3 \mid 81=80-(-1) \\
& a \stackrel{n}{=} a \quad \text { as } \quad n \mid 0=a-a
\end{aligned}
$$

Let's recall some of the basic properties of divisibility before we continue our study of congruence arithmetics.

Recall $\forall d, a, b \in \mathbb{Z}$, we have
(1) $d l a \Rightarrow d l a b$.
(2) $(d|a \wedge d| b) \Longrightarrow d \mid a \pm b$.

Lecture 26: Congruence arithmetic
Wednesday, November 23, 2016 5:24 PM
(3)

$$
\left.\begin{array}{l}
d \mid a_{1}-a_{2} \\
d \mid b_{1}-b_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
d \mid\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right) \\
d \mid a_{1} b_{1}-a_{2} b_{2}
\end{array}\right.
$$

Let me just quickly recall haw we showed the last assertion:

$$
a_{1} b_{1}-a_{2} b_{2}=a_{1} b_{1}-a_{2} b_{1}+a_{2} b_{1}-a_{2} b_{2}=\left(a_{1}-a_{2} b_{1}+a_{2}\left(b_{1}-b_{2}\right) \oplus\right.
$$

Since $d \mid a_{1}-a_{2}$ and $d \mid b_{1}-b_{2}$, there are integers k_{1} and k_{2} such that $a_{1}-a_{2}=d k_{1}$ and $b_{1}-b_{2}=d k_{2}$. So by \oplus we get $a_{1} b_{1}-a_{2} b_{2}=\left(d k_{1}\right) b_{1}+a_{2}\left(d k_{2}\right)=d\left(\underset{\substack{k_{1} \\ i \\ i \\ b_{1} \\ \text { an in integer }}}{ } a_{2} k_{2}\right)$. Hence $d \mid a_{1} b_{1}-a_{2} b_{2}$.

Lemma. For any $n \in \mathbb{Z}^{+}, a, b, c \in \mathbb{Z}$, we have
(1) $a \xlongequal{n} b \Rightarrow b \stackrel{n}{\equiv} a$.
(2)

$$
\left.\begin{array}{l}
a \stackrel{n}{\equiv} b \\
b \stackrel{n}{\equiv} c
\end{array}\right\} \Rightarrow a \stackrel{n}{\equiv} c
$$

Proof. (1) $a \underline{\underline{n}} b \Rightarrow n|a-b \Rightarrow n|(-1)(a-b)=b-a$

$$
\Rightarrow b \stackrel{n}{\equiv} a
$$

(2)

$$
\left.\begin{array}{rl}
a \stackrel{n}{\equiv} b \Rightarrow n \mid a-b \\
b \stackrel{n}{\equiv} c \Rightarrow n \mid b-c
\end{array}\right\} \Rightarrow n \mid(a-b)+(b-c)
$$

(For all practical reasons it behaves like an equality.)

Lecture 26: Congruence arithmetic
Corollary. For $n \in \mathbb{Z}^{+}, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$, we have

$$
\left.\begin{array}{l}
a_{1} \stackrel{n}{\equiv} a_{2} \\
b_{1} \stackrel{n}{\equiv} b_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
a_{1}+b_{1} \stackrel{n}{\equiv} a_{2}+b_{2} \\
a_{1} b_{1} \stackrel{n}{\equiv} a_{2} b_{2}
\end{array}\right.
$$

Proof. $\left.\quad a_{1} \xlongequal{n} a_{2} \Rightarrow n \mid a_{1}-a_{2}\right\} \Rightarrow\left\{\begin{array}{l}n \mid\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right) \\ b_{1} \equiv b_{2} \Rightarrow n \mid b_{1}-b_{2}\end{array}\right\} \Rightarrow$

$$
\left\{\begin{array}{l}
a_{1}+b_{1} \stackrel{n}{\equiv} a_{2}+b_{2} \\
a_{1} b_{1} \xlongequal{\equiv} a_{2} b_{2}
\end{array}\right.
$$

 $a, b \in \mathbb{Z}$, we have

$$
a \stackrel{n}{\equiv} b \quad \Longrightarrow \quad a^{m} \xlongequal{n} b^{m}
$$

Proof. We prove this by induction on m.
Base of induction. $m=1$. This case is clear as $a^{1}=a, b^{1}=b$, and $a^{n} \equiv b$.

Induction step. For a given integer k, we have to show

$$
a^{k} \xlongequal{\equiv} b^{k} \stackrel{?}{\Longrightarrow} \quad a^{k+1} \xlongequal{n} b^{k+1}
$$

$\left.\begin{array}{l}a^{k} \xlongequal{n} b^{k} \\ a \stackrel{n}{\equiv} b\end{array}\right\} \Rightarrow a^{k} \cdot a \xlongequal{k+1} \equiv b^{k+1} \cdot b \quad$ (by the above lemma) $\left.\begin{array}{rl}a \cong b\end{array}\right\} \Rightarrow a \cdot a \equiv b \cdot b$.

Lecture 26: Division algorithm; congruence arithmetic
Theorem. For any $n \in \mathbb{Z}^{+}$and $a \in \mathbb{Z}$, there is a unique $r \in \mathbb{Z}$ such that
(1) $a \equiv r(\bmod n)$
(2) $0 \leq r<n$.

Proof. Existence. By Division algorithm there are integers q and r such that (1) $a=n q+r$,
(2) $0 \leq r<n$.

So $a-r=n g$, which implies $n \mid a-r$. Hence $a \stackrel{n}{\equiv} r$.
Thus $a \xlongequal{n} r$ and $0 \leq r<n$.
Uniqueness Using Division algorithm, it is enough to prove $\left.\begin{array}{l}a \stackrel{n}{\equiv} r \\ 0 \leq r<n\end{array}\right\} \Rightarrow \begin{aligned} & r \text { is the remainder of } \\ & a \text { divided by } n .\end{aligned}$

$$
a \stackrel{n}{\equiv} r \Rightarrow n \mid a-r \Rightarrow \exists q \in \mathbb{Z}, \quad n q=a-r
$$

$\Rightarrow a=n q+r \Rightarrow r$ is the remainder of and we have $0 \leq r<n$ a divided by n.

Lecture 26: Remainder of division by 9
Ex. What is the remainder of 10^{n} divided by 9 (for $\left.n \in \mathbb{Z}^{+}\right)$?
Solution. $10 \stackrel{9}{\equiv} 1 \Rightarrow$ for any $n \in \mathbb{Z}^{+}, \quad 10^{n} \xlongequal{\equiv}=1^{n}=1$
(by a corollary proved inductively on n.)
\Rightarrow the remainder of 10^{n} divided by 9 is 1 .
Ex. What is the remainder of 109109140100103 divided by 9 ?
Solution. $109109140100103=$

$$
\begin{aligned}
& 3+10 \times 0+10^{2} \times 1+10^{3} \times 0+10^{4} \times 0+10^{5} \times 1+10^{6} \times 0+10^{7} \times 4+ \\
& 10^{8} \times 1+10^{9} \times 9+10^{10} \times 0+10^{11} \times 1+10^{12} \times 9+10^{13} \times 0+10^{14} \times 1 \\
& \frac{9}{=} 3+0+1+0+0+1+0+4+1+9+0+1+9^{9}+0+1
\end{aligned}
$$

$10^{n} \equiv 1(\bmod 9) \Rightarrow$ powers of 10 can be replaced with 1
which means we are adding the digits of this number $\frac{9}{\equiv} 12 \xlongequal{\underline{9}} 3$. So the remainder of this division is 3 .

Lecture 26: Remainder of a division by 11
Ex. What is the remainder of 10^{n} divided by 11 (for $\left.n \in \mathbb{Z}^{+}\right)$?
Solution. $10 \stackrel{11}{\equiv}-1 \Rightarrow$ for any $n \in \mathbb{Z}^{+}, \quad 100^{n} \xlongequal[\equiv 11]{\equiv}(-1)^{n}$
(by a corollary proved inductively on n.)
So, if n is even, remainder is 1 .
And, if n is odd, remainder is 10 .
cwarning: Remainder is always non-negative.)

Ex. What is the remainder of 109109140100103 divided by 11?
Solution. $109109140100103=$

$$
\begin{aligned}
& 3+10 \times 0+10^{2} \times 1+10^{3} \times 0+10^{4} \times 0+10^{5} \times 1+10^{6} \times 0+10^{7} \times 4+ \\
& 10^{8} \times 1+10^{9} \times 9+10^{10} \times 0+10^{11} \times 1+10^{12} \times 9+10^{13} \times 0+10^{14} \times 1 \\
& \frac{11}{\bar{\pi}} 3-0+1-0+0-1+0-4+1-9+0-1+9-0+1
\end{aligned}
$$

$10^{n} \equiv(-1)^{n}(\bmod 10) \Rightarrow$ powers of to should be replaced with 1 or -1
\Rightarrow we should alternate between adding and subtracting digits.
$\stackrel{11}{\equiv} 0$. So this number is divisible by 11 and the remainder is 0 .

