Lecture 25: The floor function
Monday, November 21, 2016 2:42 PM
Lemma. For any real number x, there is a unique integer n such that

$$
n \leq x<n+1
$$

(In mathematical language, $\forall x \in \mathbb{R}, \exists!n \in \mathbb{Z}, n \leq x<n+1$.)
Proof. Existence. Case 1. $x \geq 0$.
Consider the set $\{m \in \mathbb{Z} \mid 0 \leq m \leq x\}$. This is a finite set. So it has a maximum (this can be proved for any finite subset of \mathbb{R} using induction on the cardinality of the finite set.) Let $n=\max \{m \in \mathbb{Z} \mid 0 \leq m \leq x\}$. So
(1) $0 \leq n \leq x$ and (2) $n+1 \notin\{m \in \mathbb{Z} \mid 0 \leq m \leq x\}$.
(2) implies that either $n+1<0$ or $n+1>x$.
(1) implies $n+1 \geq 1$. So $n+1>x$. Hence, by (1), we get $\quad n \leq x<n+1$.

Case 2. $x \in \mathbb{Z}$.
In this case $x \leq x<x+1$ and $n=x$ works.
Case 3. $x<0$ and $x \notin \mathbb{Z}$.

Lecture 25 : The floor function
Monday, November 21, 2016 2:50 PM
$x<0 \Rightarrow-x>0 \Rightarrow$ by case 1 , there is $m \in \mathbb{Z}$ such that

$$
m \leq-x<m+1
$$

Since $x \notin \mathbb{Z}, m \neq-x$. Hence $m<-x<m+1$. Therefore

$$
\begin{aligned}
& -(m+1)<x<-m=-(m+1)+1 \\
\Rightarrow \quad & -(m+1) \leq x<-(m+1)+1
\end{aligned}
$$

So $n=-(m+1)$ works.
Uniqueness We have to show

$$
\left.\begin{array}{c}
n_{1} \leq x<n_{1}+1 \\
n_{2} \leq x<n_{2}+1 \\
n_{1}, n_{2} \in \mathbb{Z}
\end{array}\right\} \Rightarrow n_{1}=n_{2}
$$

Suppose to the contrary that for some $n_{1}, n_{2} \in \mathbb{Z}$. we have $n_{1} \neq n_{2}$ and $n_{1} \leq x<n_{1}+1$ and $n_{2} \leq x<n_{2}+1$.

So either $n_{1}>n_{2}$ or $n_{2}>n_{1}$. By symmetry, it is enough to deal with the case $n_{1}>n_{2}$.

$$
\left.\begin{array}{l}
n_{1}>n_{2} \\
n_{1}, n_{2} \in \mathbb{Z}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
n_{1}-n_{2}>0 \\
n_{1}-n_{2} \in \mathbb{Z}
\end{array}\right\} \Rightarrow n_{1}-n_{2} \geq 1 \Rightarrow n_{1} \geq n_{2}+1
$$

$\Rightarrow x \geq n_{1} \geq n_{2}+1>x \Rightarrow x>x$ which is a contradiction.

Lecture 25: Division algorithm
Theorem (Division algorithm) For any integers a and b, $b \neq 0$, there is a unique pair of integers (q, r) such that
(1) $a=b q+r$
(2) $0 \leq r<|b|$.

Proof. Case 1. $b>0$.
Existence. Claim $q=\lfloor a / b\rfloor$ and $r=a-b q$ is such a pair.

- q is an integer by the definition of the floor function.
- $a, b, q \in \mathbb{Z} \Rightarrow r=a-b q \in \mathbb{Z}$.
- Property (1) is clear: $r=a-b q \Rightarrow a=b q+r$.

Now we show Property (2):

$$
|a / b| \leq a / b<\lfloor a / b\rfloor+1 \Rightarrow q \leq a / b<q+1 .
$$

Since $b>0$, we get $b q \leq a<b q+b$
$\Rightarrow \quad 0 \leq a-b q<b \quad$ (adding - $b q$ to all

$$
\Rightarrow \quad 0 \leq r<b=|b|
$$

Case 2. $b<0$.
Claim $q=-\lfloor-a / b\rfloor, r=a-b q$ satisfy the mentioned properties.

- As before we can see q and r are integers which satisfy the $1^{\text {st }}$ property.
- Now we show Property (2):

$$
\lfloor-a / b\rfloor \leq-a / b<\lfloor-a / b\rfloor+1 \Rightarrow-q \leq-a / b<-q+1
$$

Since $-b>0$, we get

$$
\begin{aligned}
& (-b)(-q) \leq(-b)\left(-\frac{a}{b}\right)<(-b)(-q+1) \\
\Rightarrow & b q \leq a<b q-b-b q+|b| \\
\Rightarrow & 0 \leq a-b q<|b| \\
\Rightarrow & 0 \leq r<|b|
\end{aligned}
$$

$$
(\text { add }-b q)
$$

Uniqueness. We have to prove

Lecture 25: Division algorithm
Monday, November 21, 2016 4:22 PM

$$
\left.\begin{array}{l}
a=b q_{i}+r_{i} \\
0 \leq r_{i}<|b|
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\frac{a}{|b|}=\frac{b q_{i}}{|b|}+\frac{r_{i}}{|b|} \\
0 \leq \frac{r_{i}}{|b|}<1
\end{array}\right] \underbrace{\frac{b}{|b|} q_{i} \leq \underbrace{}_{\frac{b}{|b|} q+\frac{r_{i}}{|b|}<\frac{b}{|b|} q+1}}_{\frac{a}{|b|}}
$$

Notice that $\left(\frac{b}{|b|}=1\right.$ if $\left.b>0\right)$ and $\left(\frac{b}{|b|}=-1\right.$ if $\left.b<0\right)$. In particular, $\frac{b}{|b|} q_{i} \in \mathbb{Z}$. So

$$
\frac{b}{|b|} q_{i}=\lfloor a /|b|\rfloor \Rightarrow q_{i}=\frac{|b|}{b}\lfloor a /|b|\rfloor .
$$

[These are true for $i=1$ and $i=2$.] So

$$
q_{1}=\frac{|b|}{b}\lfloor a /|b|\rfloor=q_{2} .
$$

Hence $r_{1}=a-b q_{1}=a-b q_{2}=r_{2}$.

