Lecture 19: Examples on image and graph of functions

Ex. Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{Im}(f)=\mathbb{Z}$?
Solution. Yes, there are lots of such functions. For instance

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z}\end{cases}
$$

Ex. Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{In}(f)=\mathbb{R} \backslash \mathbb{Z}$?
Solution. Yes, again there are lots of such functions. For instance: $f(x)= \begin{cases}x & \text { if } x \in \mathbb{R} \backslash \mathbb{Z}, \\ 1 / 2 & \text { if } x \in \mathbb{Z} .\end{cases}$ any non-integer number.

Ex. Which one of the following diagrams represent graph of a function? In each case say whether function is surjective or not?

Lecture 19: Examples of graph; injective functions

- In graph of a function every "vertical line" intersects the graph in one and exactly one point.
Ex. Suppose $G_{f}=\{(1,1),(2,3),(4,1)\}$ is graph of a surjective function. Find its domain and codomain.

Solution. First components give us the domain of f and the $2^{\text {nd }}$ components give us the image of f. Since f is surjective we have that codomain $=\operatorname{lm}(f)$. So domain $=\{1,2,4\}$ and codomain $=\{1,3\}$.

Definition. A function $f: X \rightarrow Y$ is called infective or one-to-one or 1-1 if

$$
\forall x_{1}, x_{2} \in X,\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)
$$

Definition. A function $f: X \rightarrow Y$ is called bijective if it is both infective and bijective.

Ex. In each case determine whether the given function is infective, surjective, or bijective.

Lecture 19: Injective, bijective functions
Sunday, November 6, 2016 4:34 PM
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$.
(b) $f: \mathbb{R}^{>0} \rightarrow \mathbb{R}, f(x)=x^{2}$.
(c). $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=\tan (x)$.

Solution. (a) It is a bijection.
Why is it infective? $\forall x_{1}, x_{2} \in \mathbb{R},\left(f\left(x_{1}\right)=f\left(x_{2}\right) \stackrel{?}{\Rightarrow} x_{1}=x_{2}\right)$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}+1=x_{2}+1 \Rightarrow x_{1}=x_{2}
$$

Why is it surjective? We have to show

$$
\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, \quad y=f(x)
$$

So for any $y \in \mathbb{R}$, we have to find $x \in \mathbb{R}$ such that $y=x+1$. We notice $y=x+1 \Leftarrow x=y-1$ and $y-1 \in \mathbb{R}$, which gives us the above claim.
(b) It is injective, but not surjective.

Why is it infective? $\quad \forall x_{1}, x_{2} \in \mathbb{R}^{+},\left(f\left(x_{1}\right)=f\left(x_{2}\right) \stackrel{?}{\Rightarrow} x_{1}=x_{2}\right)$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}^{2}=x_{2}^{2} \Rightarrow\left|x_{1}\right|=\left|x_{2}\right|
$$

$$
\} \Rightarrow x_{1}=x_{2}
$$

Since $x_{1}, x_{2} \in \mathbb{R}^{+}$, we have $x_{1}=\left|x_{1}\right|$ and $x_{2}=\left|x_{2}\right|$] why is it not surjective? For any $x \in \mathbb{R}^{+}, x^{2}>0$. So there is no

Lecture 19: Injective, surjective, bijective
Sunday, November 6, 2016 4:56 PM
$x \in \mathbb{R}^{>0}$ such that $-1=f(x)$, which implies $-1 \notin \operatorname{Im}(f)$.
Therefore $\operatorname{Im}(f) \neq$ the codomain of f which is \mathbb{R}.
I What is $\operatorname{Im}(f) ?$ Claim: $\operatorname{Im}(f)=\mathbb{R}^{+}$.
To show this claim, we need to show $\operatorname{Im}(f) \subseteq \mathbb{R}^{+}$and

$$
\mathbb{R}^{+} \subseteq \operatorname{Im}(f)
$$

Why is $\operatorname{Im}(f) \subseteq \mathbb{R}^{+}$? We have to show $y \in \operatorname{Im}(f) \Rightarrow y \in \mathbb{R}^{+}$.

$$
\begin{aligned}
y \in \operatorname{Im}(f) & \Rightarrow \exists x \in \mathbb{R}^{+}, y=f(x) \Rightarrow \exists x>0, y=x^{2} \\
& \Rightarrow y>0 \Rightarrow y \in \mathbb{R}^{+} .
\end{aligned}
$$

why is $\mathbb{R}^{+} \subseteq \operatorname{Im}(f)$? We have to show $y \in \mathbb{R}^{+} \Rightarrow y \in \operatorname{Im}(f)$. (Backward argument) $y \in \operatorname{Im}(f) \Longleftarrow \exists x \in \mathbb{R}^{+}, y=f(x)$

$$
\left.\Leftarrow \exists x>0, \quad y=x^{2} \Leftarrow\left(\sqrt{y}>0 \quad \text { and }(\sqrt{y})^{2}=y\right) \Leftarrow y>0 .\right]
$$

(c) It is a bijection.

In class, I used graph of $\tan x$ to convey the idea of a proof: As you can see, any horizontal line intersects the graph in one and exactly one point.

Lecture 19: Injection, surjection, bijection

Here is a more formal proof using theorems from calculus:
. Function $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=\tan x$ is a differentiable function and

$$
f^{\prime}(x)=\frac{1}{\cos ^{2} x} \geq 1 \quad \text { for any } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

(Using mean value theorem, if $x_{1}<x_{2}$, then

$$
\exists y_{0}, \quad x_{1}<y_{0}<x_{2} \text { and } \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(y_{0}\right) \geq 1
$$

In particular, $\left.f\left(x_{2}\right)-f\left(x_{1}\right) \geq x_{2}-x_{1}\right)$. So
if $x_{2}>x_{1}$, then $f\left(x_{2}\right)>f\left(x_{1}\right)$. Therefore f is infective.

We also know $\lim _{x \rightarrow \pi_{2}^{+}} \tan x=+\infty$ and $\lim _{x \rightarrow \pi / 2} \tan x=-\infty$. Since \tan is continuous, by intermediate value theorem we have $\operatorname{lm}(\tan)=\mathbb{R}$.
(Recall. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $f(a)<f(b)$, and $f(a) \leq y_{0} \leq f(b)$, then there exists $a \leq x_{0} \leq b$ such that $f\left(x_{0}\right)=y_{0}$. (This is called intermediate value theorem).

