For any non-empty set X, the identity function I_{X} of X is $I_{X}: X \rightarrow X, I_{X}(x)=x \quad$ for any $x \in X$.

Lemma For any function $f: X \rightarrow Y$, we have

$$
I_{Y} \circ f=f=f \circ I_{X}
$$

Proof. $\quad \begin{aligned} & x \stackrel{L}{L} \\ & \quad X \xrightarrow{\longrightarrow} \quad f(x)\end{aligned}$

$$
\begin{aligned}
& f: X \rightarrow Y \quad x \mapsto f(x) \\
& I_{Y} \circ f: X \rightarrow Y \\
& x \mapsto I_{Y}(f(x))=f(x) .
\end{aligned}
$$

So they have the same (co)domain and rules. Hence they are equal functions.

$$
\begin{aligned}
\left(f_{0} I_{x}\right)(x) & =f\left(I_{x}(x)\right) \\
& =f(x)
\end{aligned}
$$

And so again $f_{0} I_{x}$ and f have the same
(co)domain and rules. Thus $f_{0} I_{x}=f$.
Remark. We say this diagram commutes: it does NOT matter which path we choose.

Lecture 18: Example of composite functions
Thursday, November 3, 2016 1:14 AM
Ex. Complete the missing information, if any.

$$
\begin{aligned}
& f_{1}(x)=x+1, \quad f_{2}(x)=\sqrt{x}, \quad \text { and } \\
& f_{2} \circ f_{1}: \mathbb{R}^{20} \longrightarrow \mathbb{R}, \quad f_{2} f_{1}(x)=\sqrt{x+1}
\end{aligned}
$$

Solution. Domains and co-domains of f_{1} and f_{2} are missing.

Since $f_{2} \circ f_{1}$ exists, codomain of f_{1} is the same as domain of f_{2}. Let's denote it by Y.
domain of $f_{1}=$ domain of $f_{2} \circ f_{1}=\mathbb{R}^{20}$.
codomain of $f_{2}=$ codomain of $f_{2} \circ f_{1}=\mathbb{R}$.
, So $f_{1}: \mathbb{R}^{20} \rightarrow Y, f_{1}(x)=x+1$. In particular,

$$
\forall x \in \mathbb{R}^{20}, \quad f_{1}(x)=x+1 \in Y \text {. So }
$$

$$
x \in \mathbb{R}^{Z^{1}} \Rightarrow x \in Y \text { and so } \mathbb{R}^{Z 1} \subseteq Y
$$

- $f_{2}: Y \rightarrow \mathbb{R}, f_{2}(y)=\sqrt{y}$ in order to get a function which is defined at every $y \in Y$, we should assume $y \in Y \Rightarrow y \geq 0 \Rightarrow y \in \mathbb{R}^{\geq 0}$. Thus $Y \subseteq \mathbb{R}^{20}$. Hence Y can be any set $\quad \mathbb{R}^{21} \subseteq Y \subseteq \mathbb{R}^{20}$.

Lecture 18: Image of a function
Thursday, November 3, 2016 8:27 AM
Definition. Let $X \xrightarrow{f} Y$. Image of f is a subset of codomain:

$$
\operatorname{lm}(f)=\{f(x) \mid x \in X\} .
$$

So we have $\quad \forall y \in Y,(y \in \operatorname{lm}(f) \leftrightarrow \exists x \in X, y=f(x))$.
Definition. A function $X \xrightarrow{f} Y$ is called surjective or onto if $\operatorname{lm}(f)=Y$.

So we have
$X \xrightarrow{f} Y$ is surjective $\Longleftrightarrow \forall y \in Y, \exists x \in X, y=f(x)$
In another words, for any $y \in Y$, you can solve the equation $y=f(x)$ for $x \in X$.
Ex. Let $f: \mathbb{R}^{\geq 2} \rightarrow \mathbb{R}, f(x)=x^{3}$. Find $\operatorname{Im}(f)$.
(we will use the facts that $x \mapsto x^{3}$ and $x \mapsto \sqrt[3]{x}$ are increasing functions.)
Solution. We claim $\operatorname{Im}(f)=\mathbb{R}^{\geq 8}$. We need to show $\operatorname{lm}(f) \subseteq \mathbb{R}^{28}$ and $\mathbb{R}^{28} \subseteq \operatorname{lm}(f)$.
$\operatorname{lm}(f) \subseteq \mathbb{R}^{\geq 8}$. To show this we have to verify

Lecture 18: Image of a function
Thursday, November 3, 2016

$$
\begin{aligned}
& y \in \operatorname{lm}(f) \stackrel{?}{\Rightarrow} y \in \mathbb{R}^{28} \\
& y \in \ln (f) \Rightarrow \exists x \in \mathbb{R}^{2^{2}}, \quad y=f(x)=x^{3} .
\end{aligned}
$$

Since $x \mapsto x^{3}$ is increasing and $x \geq 2$, we have $x^{3} \geq 8$. So $y \geq 8$, which means $y \in \mathbb{R}^{28}$. $\mathbb{R}^{28} \subseteq \operatorname{lm}(f)$. We have to show

$$
y \in \mathbb{R}^{28} \Rightarrow y \in \lim (f)
$$

which means $\forall y \in \mathbb{R}^{28}, \exists x \in \mathbb{R}^{22}, y=x^{3}$.
If $y \geq 8$, then $x=\sqrt[3]{y} \geq \sqrt[3]{8}-2$ and $y=x^{3}$
So for any $y \in \mathbb{R}^{28}, y=(\sqrt[3]{y})^{3}$ and $\sqrt[3]{y} \in \mathbb{R}^{22}$.
Definition. Graph of $X \xrightarrow{f} Y$ is a subset of $X \times Y$:

$$
G_{f}=\{(x, f(x)) \mid x \in X\} .
$$

We will see several examples in the next lecture.

