We view basics of game theory only as an auxilary tool to understand propositions with universal and existential quantifiers better:

A proposition of the form $\forall x \in X, \exists y \in Y, P(x, y)$ can be interpreted as a losing game:

For every choice x of the " 1 st player", the " 2 nd player" can find a suitable "respond" y. (Suitable means $P(x, y)$ holds for this choice of y.)

A proposition of the form $\exists x \in X, \forall y \in Y, Q(x, y)$ can be interpreted as a winning game:
The "st player" has a good choice x such that for any "move" (choice of y) of the "nd player", $Q(x, y)$ is going to hold.
(You will not be asked about games.)
Now we review the $\varepsilon-\delta$ definition of limit. We interpret it in terms of a losing game.

Definition. We say $\lim _{x \rightarrow a} f(x)=L$ if

$$
\forall \varepsilon>0, \exists \delta>0,(0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon)
$$

So this can be viewed as a losing game.
No matter how the "1 $1^{s t}$ player" challenges us by choosing $\varepsilon>0$, We as " end players" can find a suitable $\delta>0$ to meet his challenge: for any x that is δ-close to a we get that $f(x)$ is ε-close to L.
Ex: Prove that $\lim _{x \rightarrow 2} x^{2}=4$.
Proof. We have to show $\quad \forall \varepsilon>0, \exists \delta>0, \quad 0<|x-2|<\delta \Rightarrow\left|x^{2}-4\right|<\varepsilon$. " Int player makes his move" and gives us $\varepsilon>0$. Now we, as " nd players" should think about "our move". We have to find a suitable $\delta>0$ such that

$$
0<|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon
$$

To find a right move, we use backward argument:

$$
\left|x^{2}-4\right|<\varepsilon \Longleftarrow|x-2||x+2|<\varepsilon
$$

We'd like to reach to this conclusion under some control on $|x-2|$ (we are allowed to make this as small as we wish!)

Let's start with an initial "estimate". Let's say we will definitely choose $\delta \leq 1$. (The choice of 1 is fairly flexible. Its main point is for us to be able toget an upper bound for $|x+2|$) That means we can assume $|x-2|<1$. So $1<x<3$ and $3<x+2<5$, which implies $|x+2|<5$. Hence

$$
\begin{aligned}
\left|x^{2}-4\right|<\varepsilon & \Leftarrow|x-2||x+2|<\varepsilon \\
& \Leftarrow|x-2|<\varepsilon / 5 \wedge|x+2|<5 \\
& \Leftarrow|x-2|<\varepsilon / 5 \wedge|x-2|<1 \\
& \Leftarrow|x-2|<\min (1, \varepsilon / 5)
\end{aligned}
$$

Therefore $\delta=\min (1, \varepsilon / 5)$ is a suitable choice.
Ex. Prove $\lim _{x \rightarrow 2} \sqrt{x}=\sqrt{2}$.
Proof. We have to prove $\forall \varepsilon>0, \exists \delta>0,0<|x-2|<\delta \Longrightarrow|\sqrt{x}-\sqrt{2}|<\varepsilon$.
Again this means for a given $\varepsilon>0$, we should find a suitable $\delta>0$ such that the above implication holds. Again we try to use a backward argument.

$$
|\sqrt{x}-\sqrt{2}|<\varepsilon \Leftarrow|x-2|<\varepsilon|\sqrt{x}+\sqrt{2}|
$$

So this time we need a lower bound for the auxilary function $|\sqrt{x}+\sqrt{2}|$. And the idea is that when x is fairly close to 2 , we expect that $\sqrt{x}+\sqrt{2}$ is fairly close to $2 \sqrt{2}$. Hence we should be able to get a lower bound for $|\sqrt{x}+\sqrt{2}|$.

Let's again decide that we choose "our move" $\delta \leq 1$.
Hence $|x-2|<1 \Rightarrow 1<x<3$

$$
\begin{aligned}
& \Rightarrow \quad 1<\sqrt{x}<\sqrt{3} \\
& \Rightarrow 1+\sqrt{2}<\sqrt{x}+\sqrt{2}<\sqrt{3}+\sqrt{2} \\
& \Rightarrow \quad 1<|\sqrt{x}+\sqrt{2}| .
\end{aligned}
$$

Therefore $\quad|\sqrt{x}-\sqrt{2}|<\varepsilon \Longleftarrow|x-2|<\varepsilon|\sqrt{x}+\sqrt{2}|$

$$
\begin{aligned}
& \Leftarrow|x-2|<\varepsilon \wedge 1<|\sqrt{x}+\sqrt{2}| \\
& \Leftarrow|x-2|<\varepsilon \wedge|x-2|<1 \\
& \Leftarrow|x-2|<\min (1, \varepsilon) .
\end{aligned}
$$

Thus $\delta=\min (1, \varepsilon)$ is a suitable choice.

