Lecture 12: Subsets, cardinality of finite sets

Thursday, October 20, 2016 2

In the previous lecture we said what it means to say A is

a subset of B and it is denoted by A = B.

It means $x \in A \Rightarrow x \in B$

So for two sets A and B, we have

 $A=B \iff (A\subseteq B \land B\subseteq A)$

Ex. For any set A, we have A S A and Ø S A.

- Ø∈{Ø} and Ø⊆{Ø}.
- . Using an axiom of set theory we have that, for any set A, $A \notin A . \quad [\text{Recall}. \quad \neg (x \in X) \text{ is denoted by } x \notin X.]$

 $.Z\subseteq Q\subseteq \mathbb{R}\subseteq \mathbb{C}$

Definition For a finite set X, the number of elements of X is called the cardinality of X. And it is denoted by IXI.

 $Ex. |\{1,1\}| = 1.$ $|\{1,2\}\}| = 3.$

- $|\varnothing| = \circ$
- $| \frac{3}{2} \frac{31}{5}, \frac{31}{135} | = 1$. In this example we are using the fact that $\frac{31}{5} = \frac{31}{15}$, and so $\frac{3}{2} \frac{31}{5}, \frac{31}{15} = \frac{31}{5} \frac{31}{5}$.

Lecture 12: Power set

Thursday, October 20, 2016

 $\underline{\text{Ex}}$. $|\{1,2,\mathbb{R}\}| = 3$. Elements of this set are 1,2, and \mathbb{R} .

- $|\{1,2,\mathbb{R},\mathbb{C}\}| = 4$
- $| \{ \{-1, 1\}, \{ x \in \mathbb{R} | x^2 = 1 \} \} | = 1$

Here we are using the fact that $\frac{3}{2} \times \mathbb{R} \left| x^2 = 1 \right| = \frac{3}{2} - 1, 1\frac{3}{2}$.

<u>Definition</u>. For a set X, the set of subsets of X is

called its power set, and it is denoted by P(X). So

$$P(X) = \{A \mid A \subseteq X\}$$

Ex., $P(\emptyset) = \{\emptyset\}$. So $|P(\emptyset)| = 1$.

- $P(\{1\}) = \{\emptyset, \{1\}\}$. So $|P(\{1\})| = 2$.
- . For any set X, $\{\emptyset, X\} \subseteq P(X)$.
- . For any sets A, X, $A \subseteq X \iff A \in P(X)$.
- .P(3a,b3)

In order to list all the subsets of {a,b}, we can think about a subset as a "club" and we have to decide who will be its member and who will not. We decide if a should be in this "club", and if b should be in this "club" or not.

Lecture 12: Power set

Thursday, October 20, 2016

3:44 PM

We use a truth table to list all the possible "decisions".

	1 .		
a e A	beA		So P(3a,68)
丁	T	~ {a, b}	. (20,103)
丁	F	~> ?as ~> ?bs	$= \{\emptyset, \{b\}, \{a\}, \{a,b\}\}.$
Ŧ	T	~~ {b}	- 1 × 1 5 . 2 . 2 . 2 . 2 . 3 . 3 . 3 . 3 . 3 . 3
F	F	~→ Ø	

$$\pm x$$
. $P(\{1,2,\{1,2\}\}) = ?$

1∈À	2€Ă	{1,2} ∈ A		
T	十	T	~~	31,2,31,283
T		F	~	£1,2}
	F	T	~	₹1, ₹1,2}}
丁	Ŧ	F	~	{1 }
F	T	T	~	₹2, {1,2 {}}
F	T	F	~	{2}
F	F	T	~	{ {1,2}}
F	F	Ŧ	~	Ø

In particular
$$P(\S1, 2, \S1, 2\S\S) = 8$$

The same line of argument implies that to list elements of

 $P(\{a_1, a_2, ..., a_n\})$ we have write a "truth table" for deciding 2 choices \times 2 choices \times 2 choices \times 2 choices \times 1 Possibilities. $a_1 \in A$, $a_2 \in A$, ..., $a_n \in A$. Hence |P(x)| = 2.

Lecture 12: Power set and set operations

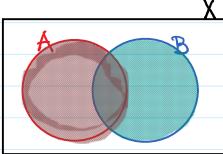
Thursday, October 20, 2016 4:01

We will make a formal proof later, but its idea is basically what is presented here.

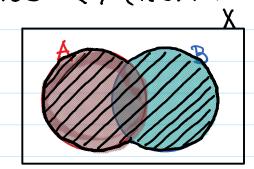
In order to have a better feeling about sets, sometimes we use Venn diagrams:

Suppose X is a set and $A,B \subseteq X$. The associated

Venn diagram looks like:



Thinking about A and B as two "student clubs", we can form a new "club" by merging them. It is called the union of A and B. It is denoted by AUB. So, for any $x \in A \cup B \iff (x \in A \lor x \in B)$.

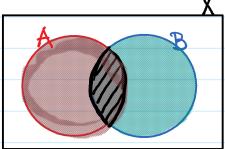


Lecture 12: Set operations

Thursday, October 20, 2016 4

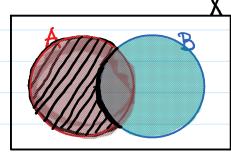
Again thinking about A and B as two "student clubs", we can form a new club out of students who are in both of the clubs. It is called the intersection of A and B and it is denoted by ANB. So for any $x \in X$

 $x \in A \cap B \iff (x \in A \land x \in B)$



Thinking about A as a "student club" and B as "bod students" (!), we can form a new club out of members who are NOT bad. It is called the set difference of A and B, and it is either denoted by $A \setminus B$ or $A - B \cdot I$ will be using $A \setminus B \cdot B$. So for any $x \in X$

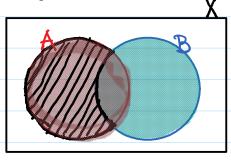
 $x \in A \setminus B \iff (x \in A \setminus x \notin B)$.

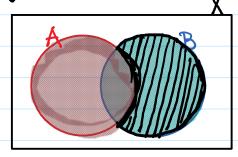


Lecture 12: Set operation

Thursday, October 20, 2016 4:37

As you can A B has nothing to do with BX





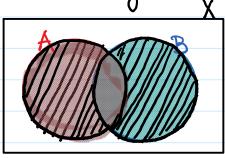
ANB

BNA

An important set operation is the symmetric difference of

A and B. It is denoted by A D. Its Venn diagram

is as follows



It can be defined as $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

In 100 or 103, you will learn that $(P(X), \Delta)$ form a group.

In the next lecture we use truth-table to show

Lemma. For any A,BCX, we have

 $A \triangle B = (A \cup B) \setminus (A \cap B)$

a	e complete a	table	℀℮ϟ	æβ	æÅΔ₿	xe(AVB)\(AnB)
	· ·			1		
	, find out the					
to	so columns are	identical.	F	T		
			F	Ŧ		