Lecture 11: Language of set theory
Monday, October 17, 2015 9:29 MM
In the previous lecture we casually defined a set:
*a well-defined collection of objects. Think about like a box
which contains certain objects
We mentioned Z, Q, R, C.
Definition. Objects in a set are called its elements or members.
We contribe a EA to say a is an element of A or a is in A.
And we contre a EA to say
$$\neg(aeA)$$
.
Ex. $\frac{1}{2} \in Q$, $\frac{1}{2} \notin Z$, $i \in C$, $i \notin R$.
A set can be given in various aways.
1. List the elements
Ex. $A = \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \in Z$, $i \in C$, $i \notin R$.
A set can be given in various aways.
1. List the elements
Ex. $4 = \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{1} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1$

Lecture 11: Language of set theory
Monday, October 17, 2015 149 PM
Ex.
$$\xi \ \xi \in \xi \ \xi \ \xi \ \xi \ \cdot$$

Definition. Taxo sets A and B are equal if they contain
the same collection of members.
"xe A \iff xeB.
Ex. $\xi 1, 13 = \xi 13$ Repeating an element does NOT change
the set.
Ex. $\xi 1, 13 = \xi 13$ Repeating an element does NOT change
the set.
Ex. $\xi \ 1, 23, 13 = \xi 1, \ 1, 2, 13, 13$.
Ex. $\xi \ 1, 23, 13 = \xi 1, \ 21, 2, 13, 13$.
Ex. $\xi \ 33 \ 5 = \xi \ \ 23 \ 5 \ \ 2$. Giving the conditions of membership.
Ex. $\xi ne \mathbb{Z} \mid 21n3$ The set of even numbers
 $fine \ xe \ R \mid x^2 - 1 = 03 = \xi 1, -13$
 $\xi xe \ R \mid x^2 - 1 = 0, \ x \ge 23 = \emptyset$.
3. Constructing the elements of the set

Lecture 11: The language of set theory Monday, October 17, 2016 2:39 PM <u>Ex.</u> $\frac{3}{2}$ k k $\frac{2}{2}$ = the set of even numbers $= \{ n \in \mathbb{Z} \mid 2 \mid n \}$ $\frac{3}{2}k+1$ keZ $\frac{?}{=}$ $\frac{3}{n}\in\mathbb{Z}$ 2 $\ln\frac{3}{2}$ To prove this we have to show for an integer n $\begin{pmatrix} n \text{ is of the form} \\ 2 \text{ } k+1 \text{ for some} \end{pmatrix} \iff 2 \text{ } n ,$ integer k which we have proved before. Definition. For two sets A and B, we say A is a subset of B and curite $A \subseteq B$ if any element of A is in B. $x \in A \Rightarrow x \in B$. $\underline{\mathsf{Ex.}}, \underline{\mathsf{zts}} \subseteq \underline{\mathsf{zts}}, 2\underline{\mathsf{s}}$. $\frac{1}{2}$ $\frac{$ To show $A \not\subseteq B$ it is enough to find x such that <mark>χελ ∧ χ∉</mark>Β. · ξζ⊆ξ1ξ In fact $\emptyset \subseteq A$ for any set A. <u>Ex.</u> Give two sets A and B such that $A \in B \land A \subseteq B$. Solution. $A = \frac{2}{13}$ and $B = \frac{2}{1}, \frac{2}{13}$ are one such example. $A = \emptyset$ and $B = \frac{2}{9}\emptyset$ is another.