Lecture 8: Induction and the Fibonacci sequence

In today's lecture we study some of the properties of the Fibonacci sequence.
$F_{0}=0, F_{1}=1, \quad F_{n+1}=F_{n}+F_{n-1} \quad$ for any positive integer n. So it has some similarities with $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}}$. Both of them are recursive, but a_{n+1} needs only 1 information and F_{n+1} needs 2 .
Let $v_{n}=\left[\begin{array}{l}F_{n} \\ F_{n-1}\end{array}\right]$. So $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and

$$
v_{n+1}=\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{c}
F_{n}+F_{n-1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
F_{n} \\
F_{n-1}
\end{array}\right] .
$$

Hence $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v_{n+1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] v_{n}$.
Now we have a recursive formula which only depends on 1 step back.
Theorem. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then for any positive integer n, we have

$$
A^{n}=\left[\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right]
$$

Lecture 8: Fibonacci sequence

Proof. We use induction on n.
Base of induction. For $n=1, L H S=A^{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

$$
R H S=\left[\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right]=\left[\begin{array}{cc}
1+0 & 1 \\
1 & 0
\end{array}\right] \quad V .
$$

The induction step. Suppose for a given positive integer k we have $A^{k}=\left[\begin{array}{ll}F_{k+1} & F_{k} \\ F_{k} & F_{k-1}\end{array}\right]$. We have to show

$$
\begin{aligned}
& A^{k+1}=\left[\begin{array}{ll}
F_{k+2} & F_{k+1} \\
F_{k+1} & F_{k}
\end{array}\right] . \\
& A^{k+1}=A^{k} \cdot A=\left[\begin{array}{ll}
F_{k+1} & F_{k} \\
F_{k} & F_{k-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
F_{k+1}+F_{k} & F_{k+1} \\
F_{k}+F_{k-1} & F_{k}
\end{array}\right] \\
&\left\{\begin{array}{l}
\text { by the induction } \\
\text { hypothesis }
\end{array}\right\}=\left[\begin{array}{ll}
F_{k+2} & F_{k+1} \\
F_{k+1} & F_{k}
\end{array}\right] .
\end{aligned}
$$

Corollary 1. For any positive integer n,

$$
F_{n+1} \cdot F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

where F_{0}, F_{1}, \ldots is the Fibonacci sequence.
Proof. $A^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$ where $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. So

Lecture 8: Fibonacci sequence
Monday, October 10, 2016 9:20 AM
Hence $F_{n+1} \cdot F_{n-1}-F_{n}^{2}=\operatorname{det}\left(A^{n}\right)$

$$
=\operatorname{det}(A)^{n}=(-1)^{n}
$$

Corollary 2. For any positive integers m, n, we have

$$
F_{n+m}=F_{m+1} F_{n}+F_{m} F_{n-1}
$$

where F_{0}, F_{1}, \ldots is the Fibonacci sequence.
Proof. We know that for any matrix A and positive integers m and n we have (why?)

$$
A^{m+n}=A^{m} \cdot A^{n}
$$

Let's use the above equality for $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and apply the main theorem :

$$
\begin{aligned}
{\left[\begin{array}{ll}
F_{n+m+1} & F_{n+m} \\
F_{n+m} & F_{n+m-1}
\end{array}\right] } & =\left[\begin{array}{ll}
F_{m+1} & F_{m} \\
F_{m} & F_{m-1}
\end{array}\right]\left[\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
F_{m+1} F_{n+1}+F_{m} F_{n} & F_{m+1} F_{n}+F_{m} F_{n-1} \\
F_{m} F_{n+1}+F_{m-1} F_{n} & F_{m} F_{n}+F_{m-1} F_{n-1}
\end{array}\right]
\end{aligned}
$$

Comparing the 12-entries, we get $F_{n+m}=F_{m+1} F_{n}+F_{m} F_{n-1}$.

Lecture 8: Fibonacci sequence

Theorem. For any positive integers m and n, we have

$$
m\left|n \Longrightarrow F_{m}\right| F_{n}
$$

where $F_{0}, F_{1}, F_{2}, \ldots$ is the Fibonacci sequence.
Proof. Let's fix a positive integer m. And let n range through multiples of m. So $n=m k$ where k is a positive integer.

So we can rewrite what we need to prove:
for a given positive integer m, for any positive integer $k, \quad F_{m} \mid F_{m k}$. We use induction on k.

Base of induction. $k=1$. We have to prove $F_{m} \mid F_{m}$, which is clear as $F_{m}=F_{m} \times 1$.

The induction step. Assume for a give positive integer l we have $F_{m} \mid F_{m l}$. Now we have to show $F_{m} \mid F_{m(l+1)}$.

$$
F_{m(l+1)}=F_{m l+m}=F_{m+1} \cdot F_{m l}+F_{m} \cdot F_{m l-1}
$$

Corollary 2 applied to $n=m l$ and m

Lecture 8: Fibonacci sequence

By the induction hypothesis, $F_{m} \mid F_{m l}$. So there is an integer s such that $F_{m l}=\left(F_{m}\right)(s)$. So

$$
\begin{aligned}
F_{m(l+1)} & =F_{m+1} \cdot F_{m} \cdot S+F_{m} \cdot F_{m l-1} \\
& =F_{m}(\underbrace{F_{m+1} \cdot S+F_{m l-1}}_{\text {integer }})
\end{aligned}
$$

Hence $F_{m} \mid F_{m(l+1)}$.
Remark 1. The converse of the above Theorem is also correct:

$$
F_{m}\left|F_{n} \Longrightarrow m\right| n
$$

Remark 2. A recursive sequence like

$$
x_{n+1}=a x_{n}+b x_{n-1}
$$

is called a

