Lecture 6: Basic properties of absolute value
Priday, October 7, 2015 1217AM
TAs informed me that some of you had difficulty on formulating a
formal definition for [X]. Let me recall from calculus that
the graph of y= [X] looks like
part of line
y=-x
So
$$|X| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x \ge 0, \end{cases}$$

One of the important properties of absolute value is the following:
Lemma For any real numbers x and y,
IXYI = IXIIYI.
Proof. If x=0, then xy=0 \Rightarrow IXYI=0
and IX=0 \Rightarrow IXIIYI=0.
So $|XY| = |X|IYI.$
If y=0, then by symmetry that $|XY| = |X|IYI.$
If y=0, then by symmetry that $|XY| = |X|IYI.$
Changing x to y and y to x
does NOT change the hypoin
so chatever proved for x
con be proved for y.

Lecture 6: multiplicativity of absolute value

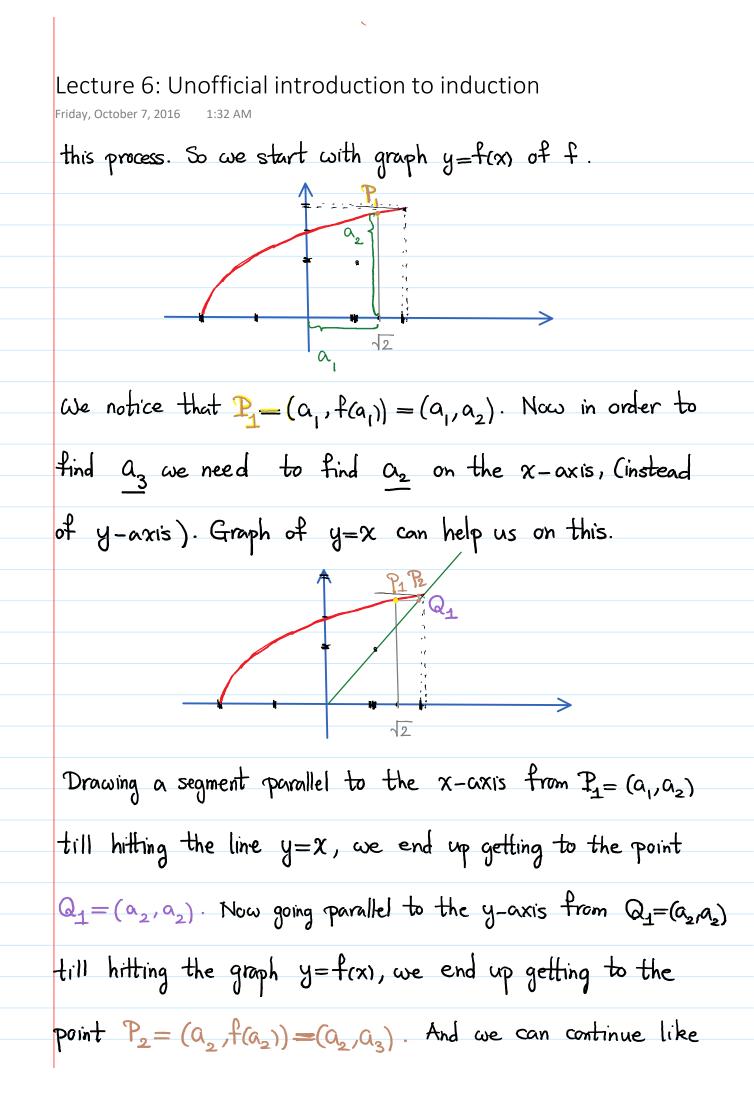
$$\begin{array}{cccc} \chi & y & \chi & |\chi| & |\chi|$$

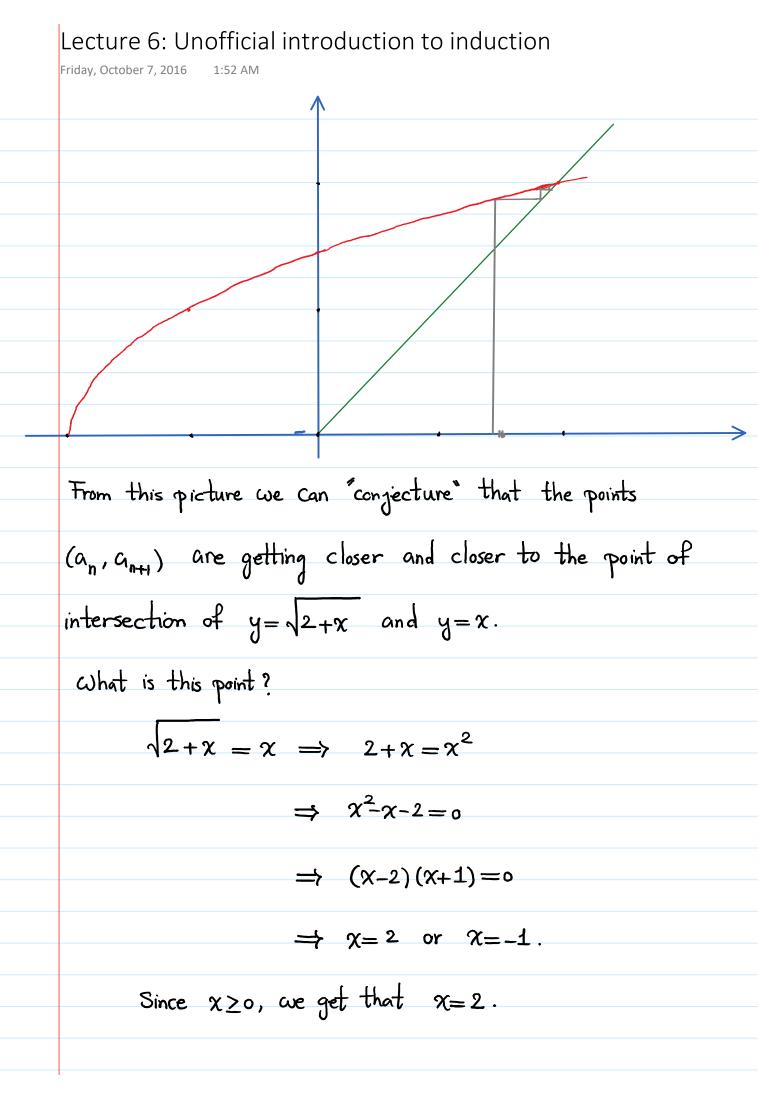
Lecture 6: A simple inequality.
Inday, October 7, 2015 12256 AM
Lemma. For any real numbers
$$x, y$$
,
 $x^2 \le y^2 \iff |x| \le |y|^2$ (by Corollary 1)
 $\Rightarrow o \le |y|^2 - |x|^2 = (|y| - |x|)(|y| + |x|)$.
Since $|x| \ge o$ and $|y| \ge o$, we have that either $x = y = o$
or $|x| + |y| > o$.
Case 1. $x = y = o$.
In this case $|x| = o$ and $|y| = o$. So $|x| \le |y|$.
Case 2. $|x| + |y| > o$.
Since the product of a positive number $|x| + |y|$
by $|y| - |x|$ is non-negative, $|y| - |x|$ should be
non-negative. So $|y| - |x| \ge o$ which implies
 $|y| \ge |x|$.
(\Leftarrow) For this direction, we use a backward argument :
 $x^2 \le y^2 \iff |x|^2 \le |y|^2 \iff o \le (|y| - |x|)(|y| + |x|) \iff \int_{|x| \ge 0}^{|x| \le |y|}$

Lecture 6: Unofficial introduction to induction Friday, October 7, 2016 1:06 AM Q. What is 1+3+5+...+(2n-1) where n is a positive integer? As always when you are faced by a new problem, start by some examples: in this case small numbers. $n=1 \longrightarrow 1$ n = 2 / 1 + 3 = 4. $n = 3 \longrightarrow 1 + 3 + 5 = 9$ n = 4 m = 1 + 3 + 5 + 7 = 16At this stage you might be able to guess a formula: Yes. Conjecture : $1+3+...+(2n-1) = n^2$. "n squared". So let's try to visualize it by creating a square n=1n=3 12 2 22 5 extra 345 3 n=4n=2. 567 7 extra 3 extra Maybe we can continue like this ! Let's see how many little squares are needed to go from an nxn square to an (n+1)x(n+1) square.

Lecture 6: Unofficial introduction to induction
Prior, October 7, 2015 1.18 AM
n So 2n+1 small squares are added which
is exactly the next odd number after
2n-1.
Q. How can we make sense of the following number? What is it?

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + 12 + \dots}}}$$
.
Whenever you see ... (and so on), it means there is a pattern
and we are continuing accordingly. Let's try to understand
this pattern:
 $a_1 = \sqrt{2}$.
 $a_2 = \sqrt{2 + \sqrt{2}}$.
Looking at these we should be able
 $a_2 = \sqrt{2 + \sqrt{2}}$.
 $a_{n+1} = \sqrt{2 + \alpha}$.
Then $a_{n+1} = f(a_n)$. So each time we are applying the
function f to get the next number. Let's try to visualize





Lecture 6: Unofficial introduction to induction Friday, October 7, 2016 2:10 AM So we conjecture that a -> 2 as n -> . From this picture we conjecture that for any positive integer n () $a_n < a_{n+1}$ $2 a_n < 2$ In the next lecture we will prove these claims.