Lecture 5: (Continuation) description of odd numbers Monday, October 3, 2016 9:22 AM

We were in the middle of a proof of:
Lemma. For any integer n, n is odd if and only if, for some integer k, we have $n=2 k+1$.

Proof. \Leftrightarrow Supposed m is the largest even number such that $m \leq n$.
Then there is an integer k such that $m=2 k$.
Let $r=n-m$. Then $o \leq r$.
Claim 1. $\quad r_{\neq 0}$.
Proof of claim 1. Suppose to the contrary that $r=0$. Then $n=m$ which implies n is even. This contradicts our assumption.

Claim 2. $r \leq 1$.
Proof of Chin 2. Suppose to the contrary that $r>1$. Since r is an integer, we get $r \geq 2$. Hence $m+2 \leq m+r=n$.

So $2 k+2=2(k+1) \leq n$ is an even number larger than m which is at most n. This contradicts the way we chose m.

Since r is an integer and $0<r \leq 1$, we have $r=1$. Hence $n=2 k+1$.
\Leftrightarrow Suppose $n=2 k+1$ for some integer k, we want to prove n is odd, i.e. n is NOT exen. Suppose to the contrary n is even. Then for some integer k^{\prime} we have

$$
2 k+1=2 k^{\prime}
$$

Hence $\quad 1=2 k^{\prime}-2 k=2\left(k^{\prime}-k\right)$. Since $k^{\prime}-k$ is an integer, we have $2 / 1$. Therefore we should have $|2| \leq|1|$ which is a contradiction.

Definition. An integer $p>1$ is called prime if the following holds: for any integers a, b,

$$
p \mid a b \Rightarrow(p|a \vee p| b) .
$$

Remark. You have seen another definition for prime. In the algebra series you will see that the definition that you have seen before is going to be called irreducible:

$$
p=a b \Longrightarrow(a= \pm p \vee b= \pm p)
$$

For integers, we will see that these are equivalent, but not for any "system of numbers" (called ring.).

Lecture 5: 2 is prime.

Theorem 2 is prime.
Proof. Suppose to the contrary that 2 is NOT prime. So for some integers a and b,

$$
2 \mid a b \wedge 2 \nmid a \wedge 2 \nmid b .
$$

$2 \nmid a \Rightarrow$ for some integer $k, \quad a=2 k+1\}$
$2 \nmid b \Rightarrow$ for some integer $l, \quad b=2 l+1$
By \oplus,

$$
\begin{aligned}
a b & =(2 k+1)(2 l+1)=4 k l+2 k+2 l+1 \\
& =2(\underbrace{2 k l+k+l)}_{\text {integer }}+1
\end{aligned}
$$

$\Rightarrow a b$ is of the form $2 k^{\prime}+1$ for some integer k^{\prime}.
$\Longrightarrow a b$ is odd which contradicts $2 \mid a b$.
Corollary. $a b$ is odd if and only if a and b are odd.
Corollary. $a b$ is even if and only if either a or b is even.

Lecture 5: Odd, even; inequality
Tuesday, October 4, 2016 10:51 PM
Corollary. For any integer n, n is odd if and only if $n+1$ is even.

Proof. $\Leftrightarrow n$ is odd $\Rightarrow n=2 k+1$ for some integer k

$$
\Rightarrow n+1=2 k+2=2(\underbrace{(k+1)}_{\text {integer }} \Rightarrow 2 \mid n+1
$$

$\Rightarrow n+1$ is even.
$\Longleftrightarrow n+1$ is even $\Rightarrow 2 \mid n+1$
$\Rightarrow n+1=2 k$ for some integer k

$$
\Rightarrow n=2 k-1=2 \underbrace{(k-1)}_{\text {integer }}+1
$$

$\Rightarrow n$ is odd.
Inequalities are perfect examples of "backward" arguments:
Theorem For any real numbers x and y we have

$$
x^{2}+y^{2} \geq 2 x y .
$$

Proof (Draft version; it should be rewritten from bottom to top.)

$$
\begin{aligned}
x^{2}+y^{2} \geq 2 x y & \Longleftarrow x^{2}+y^{2}-2 x y \geq 0 \\
& \Longleftarrow(x-y)^{2} \geq 0 .
\end{aligned}
$$

For any real number z, we have $z^{2} \geq 0$. (why?)

