Lecture 4: Linear Diophantine equation
In the previous lecture we proved
Lemma. For any integers a and b,

$$
(a \mid b \wedge b \neq 0) \Rightarrow|a| \leq|b|
$$

Let's see some of its applications:
Q. Does the equation $14 m-49 n=1$ have integer solutions? (This type of equations are called Diophantine equations.)

Solution. No! Suppose to the contrary that there are integers m and n such that

$$
14 m-49 n=1
$$

Then the left hand side $14 m-49 n=7(2 m-7 n)$ is a multiple of 7 as $2 m-7 n$ is an integer.
Hence $7 \mid 1$. By the above lemma we get

$$
|7| \leq|1|
$$

which is a contradiction.

Lecture 4: Diophantine

The same argument implies.
Lemma. Suppose a and b are two integers.
If a and b have a common divisor d greater than 1, then the equation $a x+b y=1$ has no integer solutions.
Draft / Proof.

Given
$d l a, d \mid b, d>1$ x, y integer
$?$

Proof by contradiction

Given
dla, d lb, d>1,
x, y : integer
$a x+$ by $=1$
:---
Contradiction

$d \mid a \Rightarrow$ for some integer $\left.a^{\prime}\right\} \Rightarrow a x+b y=d a^{\prime} x+d b^{\prime} y$

$$
a=d a^{\prime}
$$

$d \mid b \Rightarrow$ for some integer b^{\prime}

$$
\begin{aligned}
b=d b^{\prime} & \\
& \underset{\text { by lemma }}{\Rightarrow}|d| \leq 1, ~
\end{aligned}
$$

which is a contradiction.

Lecture 4: Biconditional proposition, odd and even Friday, September 30, 2016 9:38 AM
In fact, the converse of this lemma is also correct, but it is harder to prove. We will do it later in this course.

Converse of $P \Rightarrow Q$ is $Q \Rightarrow P$. In general $P \Rightarrow Q$ might be true and at the same time $Q \Rightarrow P$ be false.

Biconditional Proposition $P \Longleftrightarrow Q \equiv(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.
. P if and only if Q.
P is necessary and sufficient for Q.
$P \Leftrightarrow Q$ is true exactly when P and Q have the same truth value.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
I	I	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

Definition. Let n be an integer. We say n is even if $2 \mid n$. We say n is odd if n is NOT even.

Important remark. Since the above conditional proposition is defining a phrase, it gets promoted to a biconditional proposition.

