In this course you are supposed to learn

- How to listen to a proof and understand it.
. How to read a proof and understand it.
- How to produce a proof and communicate your thoughts.

We will use different parts of mathematics to achieve this goal. We start with Propositional Logic, introduce quantifiers, use basic ideas from game theory, discuss $\varepsilon-\delta$ definition of limit, study a little bit of arithmetic. The key to success, however, is doing lots of exercises.

Mathematical Language
Proposition is a sentence that is either true or false (not at the same time!).
Ex. $1+1$ is NOT a proposition. A proposition has to claim something. That claim might be true or false. A sentence with no claim is not a proposition.

Ex. $1+1=3$ is a proposition. It is a false proposition.
Ex. $m=1$. Ht is NOT a proposition. We do not know where m lives and in what capacity should we look for it.

Lecture 1: Proposition
Friday, September 23, 2016 4:31 PM
At the same, I should add that one often sees a sentence similar to "Let $m=1$ " in math articles or books. This sentence is NOT a proposition as it makes no claim.

Ex. For any rational number $m, m=1$.
This is a proposition. In fact, this is a false proposition.
To see it is false, it is enough to present a counter-example.
Since this proprosition claims that certain property should hold for any rational number, it is enough to find a single rational number which does NOT satisfy the claimed property to get that it is a false proposition. (I agree! It became a very long and more complicated than it should have been, but hopefully you have got point.)

2 is a rational number and $2 \neq 1$.
So 2 is a counter-example.
Ex. If m is integer and $0<m<2$, then $m=1$.
This is a true proposition.

Ex. $x^{2} \geq 0$
It is NOT a proposition. It does NOT make any claim: where x lives and it what capacity should we look for it For instance we can make it into a proposition, as follows:

For any real number $x, x^{2} \geq 0$.
There is a complex number x such that $x^{2} \geq 0$ does not hold.

- $x^{2} \geq 0$ and $m=1$ are called predicates and x and m in these sentences are called free variables.
- Adding quantifiers and determining "universes for free variables of a predicate makes it into a proposition.
Ex. If m is a rational number and $0<m<2$, then $m=1$.
It is a false proposition. To show a conditional sentence is false one has to find an example where the hypothesis holds and at the same time the conclusion fails.
$\frac{1}{2}$ is a rational number and $0<\frac{1}{2}<2$, and $\frac{1}{2} \neq 1$. So $\frac{1}{2}$ is a counter-example.

Let's try to write down our general method of finding the truth value of a conditional statement.

If something, then something.
This is too ambiguous. So we use variables instead of "somethings".
If H , then C .
Here H and C stand for two propositions. (Ht is similar to calculus where variables are used instead of numbers, here variables are used instead of propositions.) What we said about the truth-value of this conditional statement can be summeraized in the following table
$\xrightarrow[T]{T}$ then $C\left\{\begin{array}{l}\text { should be } \\ \text { false only } \\ \text { when } H \text { holds } \\ \text { and } C \text { fails }\end{array}\right\}$

H	C	if H, then C
T	T	T
T	F	F
F	T	T
F	F	T

all the possible
truth-value
combinations
As you saw in the previous examples, we can connect propositions

Lecture 1: Proposition
Friday, September 23, 2016 5:30 PM to form new propositions.

Suppose P and Q are two propositions.
Conjunction. P and Q.
It is denoted by $P_{\wedge} Q$.
Disjunction. P or Q.
It is denoted by $P \vee Q$.
Conditional sentence or implication

If P, then Q.
P implies Q.
P is sufficient for Q.
Q is necessary for P.
Next time we will discuss the truth-value table of these Connectives.

