1. Prove that, for two non-empty sets A and B,

There is a surjection $A \xrightarrow{f} B \Longleftrightarrow|B| \leq|A|$.
2. Prove that, for any real numbers $a<b$, we have that the open interval (a, b) is equipotent to the open interval $(0,1)$.
3. (a) Prove that $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim \mathbb{R}$. (You are allowed to use results mentioned in class long ago without proof!)
(b) Using part (a), show $(0,1) \sim \mathbb{R}$.
4. Prove that, for any two non-empty sets A and B,

$$
|A|=|B| \Rightarrow|P(A)|=|P(B)|
$$

5. (a) Prove that $\left\{X \subseteq \mathbb{Z}^{\geq 0} \mid X\right.$ is finite $\}$ is enumerable.
(Hist. Let $f:\left\{X \subseteq \mathbb{Z}^{Z^{0}} \mid X\right.$ is finite $\} \rightarrow \mathbb{Z}^{+}$,

$$
f\left(\left\{m_{1}, \cdots, m_{k} \xi\right)=2^{m_{1}}+\cdots+2^{m_{k}} .\right)
$$

(b) Prove that there is no surjection

$$
g:\left\{X \subseteq \mathbb{Z}^{\geq 0} \mid X \text { is finite }\right\} \rightarrow P\left(\mathbb{Z}^{20}\right)
$$

where $\mathbb{P}\left(\mathbb{Z}^{\geq 0}\right)$ is the power set of $\mathbb{Z}^{\geq 0}$. (Hint. Cantor.)

In exercise 5, you are allowed to use the fact that any positive integer has a unique binary representation, i.e. $\forall n \in \mathbb{Z}^{+}, \exists!\quad m_{1}, \ldots, m_{k} \in \mathbb{Z}^{20}, \quad 0 \leq m_{1}<m_{2}<\cdots<m_{k}$ and $n=2^{m_{k}}+2^{m_{k-1}}+\cdots+2^{m_{1}}$.
6. Determine if the following functions are infective or surjective. Justify your answers.
(a) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}, \quad f((a, b))=3 a-2 b$.
(b) Let $A \subseteq X$, and $l: P(X) \rightarrow P(X)$,
$l(B)=A \Delta B \cdot($ Hint. What is $l \circ l(B)$?)
(c) Let Y be a non-empty subset of X, and $\lambda: P(X) \rightarrow P(Y), \quad \lambda(B)=Y \cap B$.
7. Let $X_{E}=\{A \in P(\{1,2, \ldots, n\})| | A \mid$ is even $\}$ and $X_{0}=\{A \in P(\{1,2, \ldots, n\})| | A \mid$ is odd $\}$.
(a) Show that $l_{1}: X_{E} \rightarrow X_{0}, l_{1}(A)=A \Delta\{1\}$ and $\ell_{2}: X_{0} \rightarrow X_{E}, \ell_{2}(A)=A \Delta \xi 1 \xi$ are well-defined.
(b) Show that l_{1} is the inverse of l_{2}.
(c) Conclude that $\left|X_{E}\right|=\left|X_{0}\right|=2^{n-1}$.

