1. Suppose X be a non-emply set. For any subset A of X, let $\mathbb{1}_{A}$
be the characteristic function of A. That means,

$$
\mathbb{1}_{A}: X \rightarrow\{0,1\}, \quad \mathbb{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A . \\ 0 & \text { if } x \notin A .\end{cases}
$$

(a) Suppose X is finite. What is $\sum_{x \in X} \mathbb{1}_{A}(x)$?
(b) Use part (a) and $\mathbb{1}_{A \cup B}=\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A \cap B}$ to conclude

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

(c) Suppose A_{1}, \ldots, A_{n} are subsets of X. By induction on n, show that $\mathbb{1}_{\left(A_{1} \cup A_{2} \cup \cdots, \cdot \cup A_{n}\right)^{c}}=\left(1-\mathbb{1}_{A_{1}}\right)\left(1-\mathbb{1}_{A_{2}}\right) \cdots\left(1-\mathbb{1}_{A_{n}}\right)$.
(Hint. Use $\left.(A \cup B)^{c}=A^{c} \cap B^{c}, \mathbb{1}_{A^{c}}=1-\mathbb{1}_{A}, \mathbb{1}_{A^{c} \cap E}=\mathbb{1}_{A^{C}} \cdot \mathbb{1}_{B}.\right)$
(d) Use part (c) to conclude

$$
\begin{aligned}
& \mathbb{1}_{\left(A_{1} \cup \cdots \cup A_{n}\right)^{c}=1-\left(\mathbb{1}_{A_{1}}^{+\cdots}+\mathbb{1}_{A_{n}}\right)+\left(\tilde{1}_{\left.\mathbb{1}_{A_{n} \cap A_{2}}^{+\cdots}+\mathbb{1}_{A_{n-1} \cap A_{n}}\right)}^{\text {all }} \mathbb{1}_{A_{i} \cap A_{j}}\right.} \\
& -\left(\mathbb{1}_{A_{1} \cap A_{2} \cap A_{3}^{+}+\cdots+A_{A_{n-2}} \cap A_{n-1} \cap A_{n}}^{1}\right)+\cdots
\end{aligned}
$$

(signs alternate) $+(-1)^{n} \mathbb{1}_{A_{\cap} \cap A_{2} \cap \cdots \cap A_{n}}$
Then, using (a), deduce

$$
\left|\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{c}\right|=|X|-\sum_{i}\left|A_{i}\right|+\sum_{i_{i}<i_{2}}\left|A_{i_{1}} \cap A_{i_{2}}\right|-\cdots+(-1)^{n}\left|A_{1} \cap \cdots A_{n}\right| .
$$

(This is called inclusion-exclusion formula).
2.(a) Suppose $f: X \rightarrow Y$ is a function. Prove that if $g: Y \rightarrow X$ is a left inverse of f and $h: Y \rightarrow X$ is a right inverse of f, then $g=h$.

CHint (1)You are allowed to use the fact that for three functions $X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} X_{3} \xrightarrow{f_{3}} X_{4}$ we have $f_{3} \circ\left(f_{2} \circ f_{1}\right)=\left(f_{3} \circ f_{2}\right) \circ f_{1}$.
(2) Consider gofoh.)
(b) Use part (a) and a theorem proved in class to show: If a function $X \xrightarrow{f} Y$ is a bijection, then there is a unique function $Y \xrightarrow{g} X$ such that $g \circ f=I_{X}$ and $f \circ g=I_{X}$.
(This function is called the inverse of f, and it is denoted by $f^{(-1)}$.)
3. Suppose $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are two bijection.
(a) Prove that $g \circ f$ is a bijection.
(b) Prove that $f^{(-1)}$ is a bijection. $\left(f^{(-1)}\right.$ is as above.)
4. Suppose $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are two functions, and oof is a bijection. Prove that
g is injective $\Longleftrightarrow f$ is surjective.
CLint. g bijective $\Rightarrow f=g^{(-1)} \circ(g \circ f) \quad$ Use problem 3 f bijective $\Rightarrow g=(g \circ f) \circ f^{(-1)}$ bijective bijective $\begin{aligned} & \text { and a theorem } \\ & \text { from class.) }\end{aligned}$ bijective bijective

Problem set 7
Saturday, November 12, 2016 1:44 AM
This is NOT part of your homework assignment. It is for your practice.
5. Suppose $X \xrightarrow{f} Y$ is a function. Suppose $|X| \geq 2$.

Prove that
(a) f has a unique left inverse $\Longleftrightarrow f$ is bijective.
(b) f has a unique right inverse $\Longleftrightarrow f$ is biject ive.
(Hint. Look at the way we proved
f has a left inverse $\Longleftrightarrow f$ is injective and
f has a right inverse $\Longleftrightarrow f$ is surjective, assume is not bijective and find more than 1 left or right inverse in each case.)

