1. Let A, B, C be three sets. Prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
2.(a) Prove or disprove:

$$
\forall x \in \mathbb{R},((\forall \varepsilon>0, \quad|x|<\varepsilon) \Rightarrow x=0)
$$

(b) Prove or disprove:

$$
\forall x \in \mathbb{R}, \forall \varepsilon>0, \quad(|x|<\varepsilon \Longrightarrow x=0) .
$$

(The first part of this problem you had in the previous problem set. The reason that it is repeated is for you to compare it with the $2^{\text {nd }}$ part.)
3. Let x be a non-empty set. The characteristic function of a subset A of X is defined as follows:

$$
\mathbb{1}_{A}: X \rightarrow\{0,1\}, \quad \mathbb{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

For instance, if $X=\{a, b\}$, then

x	$\mathbb{1}_{6}(x)$	$\mathbb{1}_{\{23}(x)$	$\mathbb{1}_{\left\{b_{3}\right.}(x)$	$\mathbb{X}_{\{a, b 3}(x)$
a	0	1	0	1
b	0	0	1	1

For instance the $3^{\text {rd }}$ column says: $\mathbb{1}_{\{a\}}(a)=1, \quad \mathbb{1}_{\{a \rho}(b)=0$. So essentially $\mathbb{1}_{A}(x)$ tells us whether or not $x \in A$. More precisely: $\quad x \in A \Leftrightarrow \mathbb{1}_{A}(x)=1 \quad$ and $\quad x \notin A \Leftrightarrow \mathbb{1}_{A}(x)=0$.
(a) Prove that, for any $A, B \subseteq X$ and $x \in X$,

$$
\mathbb{1}_{A \cap B}(x)=\mathbb{1}_{A}(x) \mathbb{1}_{B}(x)
$$

(b) Prove that, for any $A \subseteq X$,

$$
\mathbb{1}_{A}+\mathbb{1}_{A^{c}}=\mathbb{1}_{X}
$$

(c) Prove that for any $A, B \subseteq X$

$$
\mathbb{1}_{A \cup B}=\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A} \cdot \mathbb{1}_{B}
$$

(which means for any $x \in X$ we have

$$
\left.\mathbb{1}_{A \cup B}(x)=\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)-\mathbb{1}_{A}(x) \mathbb{1}_{B}(x) \cdot\right)
$$

IParts $(a),(b),(c)$ can be proved using a truth-table type of argument in terms of $x \in A, x \in B$.
(d) Prove that $\mathbb{1}_{A \backslash B}=\mathbb{1}_{A}-\mathbb{1}_{A} \cdot \mathbb{1}_{B}$
(Hint. Use $A \backslash B=A \cap B^{c}$ and previous parts.)
(e) Prove that $\mathbb{1}_{A \Delta B}=\mathbb{1}_{A}+\mathbb{1}_{B}-2 \mathbb{1}_{A} \cdot \mathbb{1}_{B}$ and conclude that $\quad\left(\mathbb{1}_{A \Delta B}(x)=1\right) \Longleftrightarrow\left(\mathbb{1}_{A}(x)+\mathbb{1}_{B}(x)\right.$ is odd $)$.
(7) Prove that $\forall A, B \subseteq X,\left(\left(\forall x \in X, \mathbb{1}_{A}(x) \leq \mathbb{1}_{B}(x)\right) \Longleftrightarrow A \subseteq B\right)$.

Conclude $\quad \forall A B \subseteq X,\left(\mathbb{1}_{A}=\mathbb{1}_{B} \Longleftrightarrow A=B\right)$.
4. Let X be a non-empty set. Let $F(X,\{0,1\})$ be the

Problem set 6
Sunday, November 6, 2016
set which consists of functions from X to $\{0,1\}$. So for instance $\quad f:\{a, b\} \rightarrow\{0,1\}, f(a)=1, f(b)=0$ is a function from $\{a, b\}$ to $\{0,1\}$. Hence $f \in F(\{a, b\},\{0,1\})$.

Let $\Theta: P(X) \rightarrow F(X,\{0,1\}), \quad \Theta(A)=\mathbb{1}_{A}$ where $\mathbb{1}_{A}$ is the characteristic function of A as defined in the previous problem.

Prove that θ is a bijection.

