Problem set 3
Thursday, October 13, 2016 2:37 AM

1. Let $f(x)=1+\frac{1}{1+\frac{1}{x}}=\frac{2 x+1}{x+1}$ for positive real number $x$.
(a) Prove that $f(x)$ is increasing, i.e. for any real numbers $x_{1}$ and $x_{2}$,

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

For the rest of this problem, let $\bar{a}_{0}=1$ and, for any non-negative integer $n, a_{n+1}=f\left(a_{n}\right)$. ( $f$ is the above function.)
(b) Prove that for any non-negative integer $n$,

$$
a_{n} \leq \frac{1+\sqrt{5}}{2}
$$

[Hint. First observe that $f\left(\frac{1+\sqrt{5}}{2}\right)=\frac{1+\sqrt{5}}{2}$.]
(c) Prove that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is an increasing sequence, i.e. for any non-negative integer $n, \quad a_{n} \leq a_{n+1}$.
(d) Prove that $\lim _{n \rightarrow \infty} a_{n}=\frac{1+\sqrt{5}}{2}$.
[Remark. Using a similar technique one can show that $b_{0}=2=1+\frac{1}{1}, b_{n+1}=f\left(b_{n}\right)$ defines a decreasing sequence

Thursday, October 13, 2016 2:48 AM
which converges to $\frac{1+\sqrt{5}}{2}$. Altogether we have $1+\frac{1}{1+\frac{1}{1+\cdots}}=\frac{1+\sqrt{5}}{2}$.
This is an example of a continued fraction.]
2. Prove that for any positive integer $n$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Let $b_{1}=1, b_{n+1}=1+\frac{1}{b_{n}}$ for any positive integer $n$. So we get the following initial terms:

$$
1,2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \ldots
$$

@ Prove that for any positive integer $n$,

$$
b_{n}=\frac{F_{n+1}}{F_{n}}
$$

where $F_{0}, F_{1}, \ldots{ }^{n}$ is the Fibonacci sequence.
(b) Prove that for any positive integer $n$,

$$
b_{n+1}-b_{n}=\frac{(-1)^{n+1}}{F_{n} F_{n+1}}
$$

4. (Postage stamp problem) Prove that any postage greater than 34 can be obtained by stamps of denominations 5 and 9 .

Problem set 3
Thursday, October 13, 2016 2:58 AM
[Hint (0) You need to show for any integer $n \geq 34$ there are non-negative integers $x$ and $y$ such that

$$
n=5 x+9 y
$$

(1) Use strong induction on $\underline{n}$.
(2)

$$
\begin{aligned}
& 34=5 \times 5+9 \\
& 35=5 \times 7 \\
& 36=9 \times 4 \\
& 37=5 \times 2+9 \times 3 \\
& 38=5 \times 4+9 \times 2
\end{aligned}
$$

6. Problem 12 from page 54
7. Problem 20 from page 56
8. Problem 21 from page 56
