Math 109: materials that are not covered in the midterms.
 Prepared by Alireza Salehi Golsefidy

1 Injection, surjection, bijection.

1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Prove the following
(a) If $g \circ f$ is injective, then f is injective.
(b) If $g \circ f$ is surjective, then g is surjective.
(c) If $g \circ f$ is a bijection, then the restriction $\left.g\right|_{\operatorname{Im}(\mathrm{f})}: \operatorname{Im}(\mathrm{f}) \rightarrow \mathrm{X}$ of g to the image of f is a bijection.
(d) If f and g are injective, then $g \circ f$ is injective.
(e) If f and g are surjective, then $g \circ f$ is surjective.
(f) If f and g are bijections, then $g \circ f$ is a bijection.
2. Let $f: X \rightarrow Y$ be a function. Prove the following
(a) There is a function $g: Y \rightarrow X$ such that $g \circ f=I_{X}$ if and only if f in injective.
(b) There is a function $g: Y \rightarrow X$ such that $f \circ g=I_{Y}$ if and only if f is surjective.
(c) f is invertible if and only if f is a bijection.
(d) If f is invertible, then there is a unique function $g: Y \rightarrow X$ such that $g \circ f=I_{X}$ and $f \circ g=I_{Y}$.
(e) If f is invertible, then its inverse f^{-1} is a bijection.
3. Determine if the following functions are injective, surjective, or bijective.
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x-1$ if x is odd, and $f(x)=x+1$ if x is even. (This is from Professor Popescu's exam.)
(b) Let X be a non-empty set, and

$$
f: P(X) \rightarrow\{g \mid g: X \rightarrow\{0,1\}\}, \quad f(A):=\mathbb{1}_{A}
$$

where $\mathbb{1}_{A}: X \rightarrow\{0,1\}$ is the characteristic function of A, i.e. $\mathbb{1}_{A}(x)=1$ if $a \in A$, and $\mathbb{1}_{A}(x)=0$ if $x \notin A$.
(c) Let $Y \subsetneq X$, and $f: P(X) \rightarrow P(Y), f(A)=A \cap Y$.
(d) Let $Y \subseteq X$, and $f: P(X) \rightarrow P(X), f(A)=A \triangle Y$.
(e) Let $\varnothing \neq Y \subseteq X$, and $f: P(X) \rightarrow\{A \in P(X) \mid Y \subseteq A\}, f(A)=A \cup Y$.
(f) Let $\alpha \in(0,1)$, and $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\lfloor n \alpha\rfloor$.
(g) Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, and $f: \mathbb{Z} \rightarrow[0,1), f(n)=n \alpha-\lfloor n \alpha\rfloor$.
(h) Let $a, b \in \mathbb{Z}^{+}$. Suppose $\operatorname{gcd}(a, b)=1$. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}, f(x, y)=a x+b y$.
4. Give a set X and two functions $f, g: X \rightarrow X$ such that $g \circ f=I_{X}$ and $g \circ f \neq I_{X}$.

2 Cardinality of a set, enumerable sets.

1. Suppose X is enumerable and Y is an infinite subset of X. Prove that Y is enumerable.
2. Assuming that any infinite subset of an enumerable set is enumerable, prove that the set \mathbb{Q} of rational numbers is enumerable.
3. State and prove Cantor's theorem.
4. Suppose X is enumerable. Prove that $|P(X)|=\left|P\left(\mathbb{Z}^{+}\right)\right|$, i.e. there is a bijection $f: P(X) \rightarrow P\left(\mathbb{Z}^{+}\right)$.
5. Prove that $\{X \in P(\mathbb{Z}) \mid X$ is finite $\}$ is enumerable.
6. Assuming that any infinite subset of an enumerable set is enumerable, prove that union of two enumerable sets is enumerable.
7. Prove that $A_{1} \times \cdots \times A_{n}$ is enumerable if A_{1}, \ldots, A_{n} are enumerable.
8. Prove that $\left\{f \mid f:\{1, \ldots, n\} \rightarrow \mathbb{Z}^{+}\right\}$is enumerable. (Hint: show that

$$
g:\left\{f \mid f:\{1, \ldots, n\} \rightarrow \mathbb{Z}^{+}\right\} \rightarrow \mathbb{Z}^{+} \times \cdots \times \mathbb{Z}^{+}, g(f)=(f(1), f(2), \ldots, f(n))
$$

is a bijection.)
9. Suppose A_{1}, A_{2}, \ldots be a sequence of enumerable subsets of X.
(a) For any $j \in \mathbb{Z}^{+}$, let $g_{j}: A_{j} \rightarrow \mathbb{Z}^{+}$be a bijection. Let $Y=\left\{(x, i) \in X \times \mathbb{Z}^{+} \mid x \in A_{i}\right\}$, and $f: Y \rightarrow \mathbb{Z}^{+} \times \mathbb{Z}^{+}, f((x, i))=\left(g_{i}(x), i\right)$. Prove that f is a bijection. Deduce that Y is enumerable.
(b) For any $x \in A_{1} \cup A_{2} \cup \ldots$, let $i(x)$ be the smallest positive integer i such that $x \in A_{i}$. Let $g: \bigcup_{j=1}^{\infty} A_{j} \rightarrow Y, g(x)=(x, i(x))$. Prove that g is injective.
(c) Assuming that any infinite subset of an enumerable set is enumerable, prove that $\bigcup_{j=1}^{\infty} A_{j}$ is enumerable.
10. Prove that $\left\{g \mid g: \mathbb{Z}^{+} \rightarrow\{0,1\}\right\}$ is not enumerable.
11. Use the decimal representation of numbers to show that there is a bijection

$$
f:(0,1) \backslash \mathbb{Q} \rightarrow\left\{g \mid g: \mathbb{Z}^{+} \rightarrow\{0,1, \ldots, 9\}\right\} .
$$

Deduce that $(0,1) \backslash \mathbb{Q}$ is not enumerable.

3 Integer part.

1. Prove that for any $x \in \mathbb{R}$ there is a unique $m \in b b z$ such that $m \leq x<m+1$.
2. Prove that for any $x \in \mathbb{R}$ there is a unique $m \in \mathbb{Z}$ such that $m<x \leq m+1$. This is called the ceiling of x and it is denoted by $\lceil x\rceil$.
3. Prove that for any $x \in \mathbb{R} \backslash \mathbb{Z}$ we have $\lfloor-x\rfloor=-\lceil x\rceil$.
4. Prove that $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}^{+},\lfloor n x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{n}\right\rfloor+\cdots+\left\lfloor x+\frac{n-1}{n}\right\rfloor$.
5. Prove that for any $n, m \in \mathbb{Z}^{+}$we have $|\{k \in\{1,2, \ldots, n\}|m| k\}|=\left\lfloor\frac{n}{m}\right\rfloor$.
6. For $x \in \mathbb{R}$ let $\langle x\rangle=\min \{\mid x-k \| k \in \mathbb{Z}\}$. Prove that $\langle x\rangle=\min \{x-\lfloor x\rfloor,\lceil x\rceil-x\}$.
7. Suppose $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
(a) Prove that for any $n \in \mathbb{Z}^{+}$there is $m \in\{1,2, \ldots, n\}$ such that $\langle m \alpha\rangle<1 / n$.
(b) Suppose $\langle x\rangle<1 / n$ for some $n \in \mathbb{Z}^{+}$. Prove that for any $y \in[0,1]$ there are $s, t \in \mathbb{Z}$ such that $|y-s x-t|<1 / n$.
(c) Prove that for any $y \in[0,1]$ and any $\varepsilon>0$ there are integers m, k such that $|y-m \alpha-k|<\varepsilon$.

4 Basic arithmetic.

1. Write down the Division theorem and prove it.
2. Prove that no integer of the form $7 k+3$ (where $k \in \mathbb{Z}$) is a perfect square.
3. Prove that $\sum_{i=0}^{m} a_{i} 10^{i} \equiv \sum_{i=0}^{m} a_{i}(\bmod 9)$.
4. Let $a, b, n \in \mathbb{Z}^{+}$. Prove that $a x \equiv b(\bmod n)$ has a solution if and only if $\operatorname{gcd}(a, n) \mid b$.
5. Find an integer solution of $2015 x+273 y=\operatorname{gcd}(2015,273)$. (This is from Professor Sorense's exam.)
6. Let $f:\{0,1, \ldots, 7\} \times\{0,1, \ldots, 7\} \rightarrow\{0,1, \ldots, 7\}, f(x, y) \equiv x y(\bmod 8)$. Write an 8×8 table where the i, j entry is $f(i-1, j-1)$. In which rows is there a 1 ?
7. Find the remainder of 9^{16} divided by 13 .
8. Suppose $a \equiv b(\bmod n)$. Prove that $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.
9. Suppose p is prime. Prove that $p \mid a b$ if and only if either $p \mid a$ or $p \mid b$.
10. Suppose $\operatorname{gcd}(a, b)=1$. Prove that $a \mid b c$ if and only if $a \mid c$.

Look at the last problem set for more related problems.

