Math 109: materials that are not covered in the midterms.

Prepared by Alireza Salehi Golsefidy

1 Injection, surjection, bijection.

- 1. Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Prove the following
 - (a) If $g \circ f$ is injective, then f is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.
 - (c) If $g \circ f$ is a bijection, then the restriction $g|_{\text{Im}(f)} : \text{Im}(f) \to X$ of g to the image of f is a bijection.
 - (d) If f and g are injective, then $g \circ f$ is injective.
 - (e) If f and g are surjective, then $g \circ f$ is surjective.
 - (f) If f and g are bijections, then $g \circ f$ is a bijection.
- 2. Let $f: X \to Y$ be a function. Prove the following
 - (a) There is a function $g: Y \to X$ such that $g \circ f = I_X$ if and only if f in injective.
 - (b) There is a function $g: Y \to X$ such that $f \circ g = I_Y$ if and only if f is surjective.
 - (c) f is invertible if and only if f is a bijection.
 - (d) If f is invertible, then there is a unique function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$.
 - (e) If f is invertible, then its inverse f^{-1} is a bijection.
- 3. Determine if the following functions are injective, surjective, or bijective.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x 1$ if x is odd, and f(x) = x + 1 if x is even. (This is from Professor Popescu's exam.)
 - (b) Let X be a non-empty set, and

$$f: P(X) \to \{g \mid g: X \to \{0, 1\}\}, \quad f(A) := \mathbb{1}_A$$

where $\mathbb{1}_A : X \to \{0, 1\}$ is the characteristic function of A, i.e. $\mathbb{1}_A(x) = 1$ if $a \in A$, and $\mathbb{1}_A(x) = 0$ if $x \notin A$.

- (c) Let $Y \subsetneq X$, and $f : P(X) \to P(Y), f(A) = A \cap Y$.
- (d) Let $Y \subseteq X$, and $f : P(X) \to P(X), f(A) = A \triangle Y$.
- (e) Let $\emptyset \neq Y \subseteq X$, and $f: P(X) \to \{A \in P(X) | Y \subseteq A\}, f(A) = A \cup Y$.
- (f) Let $\alpha \in (0, 1)$, and $f : \mathbb{Z} \to \mathbb{Z}$, $f(n) = \lfloor n\alpha \rfloor$.
- (g) Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, and $f : \mathbb{Z} \to [0,1), f(n) = n\alpha \lfloor n\alpha \rfloor$.
- (h) Let $a, b \in \mathbb{Z}^+$. Suppose gcd(a, b) = 1. Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = ax + by$.
- 4. Give a set X and two functions $f, g: X \to X$ such that $g \circ f = I_X$ and $g \circ f \neq I_X$.

2 Cardinality of a set, enumerable sets.

- 1. Suppose X is enumerable and Y is an infinite subset of X. Prove that Y is enumerable.
- 2. Assuming that any infinite subset of an enumerable set is enumerable, prove that the set \mathbb{Q} of rational numbers is enumerable.
- 3. State and prove Cantor's theorem.
- 4. Suppose X is enumerable. Prove that $|P(X)| = |P(\mathbb{Z}^+)|$, i.e. there is a bijection $f: P(X) \to P(\mathbb{Z}^+)$.
- 5. Prove that $\{X \in P(\mathbb{Z}) | X \text{ is finite}\}$ is enumerable.
- 6. Assuming that any infinite subset of an enumerable set is enumerable, prove that union of two enumerable sets is enumerable.
- 7. Prove that $A_1 \times \cdots \times A_n$ is enumerable if A_1, \ldots, A_n are enumerable.
- 8. Prove that $\{f \mid f : \{1, \ldots, n\} \to \mathbb{Z}^+\}$ is enumerable. (Hint: show that

$$g: \{f \mid f: \{1, \dots, n\} \to \mathbb{Z}^+\} \to \mathbb{Z}^+ \times \dots \times \mathbb{Z}^+, g(f) = (f(1), f(2), \dots, f(n))$$

is a bijection.)

- 9. Suppose A_1, A_2, \ldots be a sequence of enumerable subsets of X.
 - (a) For any $j \in \mathbb{Z}^+$, let $g_j : A_j \to \mathbb{Z}^+$ be a bijection. Let $Y = \{(x,i) \in X \times \mathbb{Z}^+ | x \in A_i\}$, and $f: Y \to \mathbb{Z}^+ \times \mathbb{Z}^+$, $f((x,i)) = (g_i(x), i)$. Prove that f is a bijection. Deduce that Y is enumerable.
 - (b) For any $x \in A_1 \cup A_2 \cup \ldots$, let i(x) be the smallest positive integer i such that $x \in A_i$. Let $g: \bigcup_{i=1}^{\infty} A_i \to Y, g(x) = (x, i(x))$. Prove that g is injective.
 - (c) Assuming that any infinite subset of an enumerable set is enumerable, prove that $\bigcup_{j=1}^{\infty} A_j$ is enumerable.
- 10. Prove that $\{g \mid g : \mathbb{Z}^+ \to \{0,1\}\}$ is not enumerable.
- 11. Use the decimal representation of numbers to show that there is a bijection

 $f: (0,1) \setminus \mathbb{Q} \to \{g \mid g: \mathbb{Z}^+ \to \{0,1,\ldots,9\}\}.$

Deduce that $(0,1) \setminus \mathbb{Q}$ is not enumerable.

3 Integer part.

- 1. Prove that for any $x \in \mathbb{R}$ there is a unique $m \in bbz$ such that $m \leq x < m + 1$.
- 2. Prove that for any $x \in \mathbb{R}$ there is a unique $m \in \mathbb{Z}$ such that $m < x \le m + 1$. This is called the ceiling of x and it is denoted by $\lceil x \rceil$.
- 3. Prove that for any $x \in \mathbb{R} \setminus \mathbb{Z}$ we have $\lfloor -x \rfloor = -\lceil x \rceil$.
- 4. Prove that $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}^+, \lfloor nx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{n} \rfloor + \dots + \lfloor x + \frac{n-1}{n} \rfloor$.
- 5. Prove that for any $n, m \in \mathbb{Z}^+$ we have $|\{k \in \{1, 2, \dots, n\} | m | k\}| = \lfloor \frac{n}{m} \rfloor$.
- 6. For $x \in \mathbb{R}$ let $\langle x \rangle = \min\{|x k| | k \in \mathbb{Z}\}$. Prove that $\langle x \rangle = \min\{x |x|, [x] x\}$.
- 7. Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Prove that for any $n \in \mathbb{Z}^+$ there is $m \in \{1, 2, ..., n\}$ such that $\langle m\alpha \rangle < 1/n$.
 - (b) Suppose $\langle x \rangle < 1/n$ for some $n \in \mathbb{Z}^+$. Prove that for any $y \in [0,1]$ there are $s, t \in \mathbb{Z}$ such that |y sx t| < 1/n.
 - (c) Prove that for any $y \in [0,1]$ and any $\varepsilon > 0$ there are integers m, k such that $|y m\alpha k| < \varepsilon$.

4 Basic arithmetic.

- 1. Write down the Division theorem and prove it.
- 2. Prove that no integer of the form 7k + 3 (where $k \in \mathbb{Z}$) is a perfect square.
- 3. Prove that $\sum_{i=0}^{m} a_i 10^i \equiv \sum_{i=0}^{m} a_i \pmod{9}$.
- 4. Let $a, b, n \in \mathbb{Z}^+$. Prove that $ax \equiv b \pmod{n}$ has a solution if and only if gcd(a, n)|b.
- 5. Find an integer solution of $2015x + 273y = \gcd(2015, 273)$. (This is from Professor Sorense's exam.)
- 6. Let $f : \{0, 1, \dots, 7\} \times \{0, 1, \dots, 7\} \rightarrow \{0, 1, \dots, 7\}, f(x, y) \equiv xy \pmod{8}$. Write an 8×8 table where the i, j entry is f(i-1, j-1). In which rows is there a 1?
- 7. Find the remainder of 9^{16} divided by 13.
- 8. Suppose $a \equiv b \pmod{n}$. Prove that gcd(a, n) = gcd(b, n).
- 9. Suppose p is prime. Prove that p|ab if and only if either p|a or p|b.
- 10. Suppose gcd(a, b) = 1. Prove that a|bc if and only if a|c.

Look at the last problem set for more related problems.