Math 109 Midterm 2 Review

Prepared by Janine LoBue

1 Language of set theory.

1. List all subsets of $\{1,2,\{1\},\{1,2\}\}$.
2. Show that if $(A \cup C) \subseteq(A \cup B)$ and $(A \cap C) \subseteq(A \cap B)$, then $C \subseteq B$.
3. Define the complement of a subset A of X as $A^{c}=\{a \in X \mid a \notin A\}$. Let A, B be two subsets of X. Prove the following De Morgan's Laws for sets.
(a) $(A \cap B)^{c}=A^{c} \cup B^{c}$
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$
4. Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
5. Let A and B be non-empty sets. Prove that $A \times B=B \times A$ if and only if $A=B$.
6. Let $A \triangle B:=(A \backslash B) \cup(B \backslash A)$. Prove that $A \triangle B=(A \cup B) \backslash(A \cap B)$.

2 Quantifiers.

1. Prove or disprove: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $\forall z \in \mathbb{R}, x+y=z$.
2. Show that $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$ with $n \geq N$,

$$
\frac{n}{n^{2}-1}<\epsilon
$$

3. Prove that

$$
\forall \varepsilon>0, \exists \delta>0,0<|x-1|<\delta \Rightarrow\left|x^{2}-1\right|<\varepsilon
$$

4. For each part, prove or disprove the statement.
(a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R},-x^{4}<y$.
(b) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R},-x^{4}<y$.
(c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R},-x^{3}<y$.
(d) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R},-x^{3}<y$.
5. An integer $n>1$ is called a 2 -almost prime if it is product of at most two prime factors. For instance $2,3,5,6,7,9,10$ are 2 -almost primes, but $8,12,16,18$ are NOT 2 -almost primes. Let \mathcal{P}_{2} be the set of all the 2 -almost primes. Prove that

$$
\forall n \in \mathbb{Z}^{>1}, n \notin \mathcal{P}_{2} \Rightarrow \exists m_{1}, m_{2}, m_{3} \in \mathbb{Z}^{>1}, n=m_{1} \cdot m_{2} \cdot m_{3}
$$

6. Suppose that $A \subseteq \mathbb{Z}$. Write the following statement entirely in symbols using quantifiers. Then write the negative of the statement using symbols. Finally, give an example of a set A for which the statement is true, and an example of a set A for which the statement is false. The statement is:
"There is a greatest number in the set A."

3 Functions.

1. Define functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$ and $g(x)=x^{2}-1$.
(a) Find the functions $f \circ f, f \circ g, g \circ f$, and $g \circ g$.
(b) Suppose we changed the codomain of f to be $\mathbb{R}^{\geq 0}$. Which of the functions in part (a) would still be defined?
(c) List all elements of the set $\{x \in \mathbb{R} \mid f(g(x))=g(f(x))\}$.
2. Given $Y \subseteq Z$, define the characteristic function of Y as the function $\mathbb{1}_{Y}: Z \rightarrow\{0,1\}$ where

$$
\mathbb{1}_{Y}(z)= \begin{cases}1 & \text { if } z \in Y \\ 0 & \text { if } z \notin Y\end{cases}
$$

Suppose that A and B are subsets of Z.
(a) Prove that $\mathbb{1}_{A \cap B}=\mathbb{1}_{A}(z) \mathbb{1}_{B}(z)$. That is, prove that the characteristic function of the intersection $A \cap B$ is the product of the characteristic functions of A and B.
(b) Find a subset $C \subseteq Z$ whose characteristic function is given by $\mathbb{1}_{C}=\mathbb{1}_{A}(z)+\mathbb{1}_{B}(z)-\mathbb{1}_{A}(z) \mathbb{1}_{B}(z)$.

