Math 109: The second exam. Instructor: A. Salehi Golsefidy

Name:

PID:

11/15/2016

- 1. Write your Name and PID on the front of your exam sheet.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. Show all of your work; no credit will be given for unsupported answers.
- 4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
- 5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
Total:	40	

6. Good luck!

1. (10 points) Suppose A, B, and C are three sets. Prove that,

$$\begin{array}{l} (A \cap B) \subseteq (A \cap C) \\ (A \cup B) \subseteq (A \cup C) \end{array} \right\} \Rightarrow B \subseteq C.$$

2. Write the negation of the following propositions:

(a) (5 points) $\forall L_1, L_2 \in \mathbb{R}, (\forall \varepsilon > 0, |L_1 - L_2| \le \varepsilon) \Rightarrow L_1 = L_2).$

(b) (5 points) $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, (|x-1| < \delta \Rightarrow |x^3 - 1| < \varepsilon).$

3. Suppose f: X → Y and g: Y → Z are two functions and g ∘ f is a bijection.
(a) (5 points) Prove that f is injective.

(b) (5 points) Prove that g is surjective.

4. (10 points) Let X be a non-empty set. For any subset A of X, let $\mathbb{1}_A$ be the characteristic function of A; that means

$1 \cdot \cdot Y \rightarrow \{0, 1\}$	$1 \cdot (m) = 1$	1	$\text{ if } x \in A, \\$
$\mathbb{I}_A: \Lambda \to \{0,1\},$	$\mathbb{I}_A(x) = \{$	0	if $x \notin A$.

Suppose A and B are two subsets of X. Prove that,

$$(\forall x \in X, \mathbb{1}_A(x) \le \mathbb{1}_B(x)) \iff A \subseteq B.$$